Whakaoti mō x
x=-\frac{20}{39}\approx -0.512820513
Graph
Pātaitai
Linear Equation
( \frac { 3 } { 4 } x + \frac { 1 } { 3 } ) \times \frac { 1 } { 2 } = 2 x + 1
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}x\times \frac{1}{2}+\frac{1}{3}\times \frac{1}{2}=2x+1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4}x+\frac{1}{3} ki te \frac{1}{2}.
\frac{3\times 1}{4\times 2}x+\frac{1}{3}\times \frac{1}{2}=2x+1
Me whakarea te \frac{3}{4} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{8}x+\frac{1}{3}\times \frac{1}{2}=2x+1
Mahia ngā whakarea i roto i te hautanga \frac{3\times 1}{4\times 2}.
\frac{3}{8}x+\frac{1\times 1}{3\times 2}=2x+1
Me whakarea te \frac{1}{3} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{8}x+\frac{1}{6}=2x+1
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{3\times 2}.
\frac{3}{8}x+\frac{1}{6}-2x=1
Tangohia te 2x mai i ngā taha e rua.
-\frac{13}{8}x+\frac{1}{6}=1
Pahekotia te \frac{3}{8}x me -2x, ka -\frac{13}{8}x.
-\frac{13}{8}x=1-\frac{1}{6}
Tangohia te \frac{1}{6} mai i ngā taha e rua.
-\frac{13}{8}x=\frac{6}{6}-\frac{1}{6}
Me tahuri te 1 ki te hautau \frac{6}{6}.
-\frac{13}{8}x=\frac{6-1}{6}
Tā te mea he rite te tauraro o \frac{6}{6} me \frac{1}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{13}{8}x=\frac{5}{6}
Tangohia te 1 i te 6, ka 5.
x=\frac{5}{6}\left(-\frac{8}{13}\right)
Me whakarea ngā taha e rua ki te -\frac{8}{13}, te tau utu o -\frac{13}{8}.
x=\frac{5\left(-8\right)}{6\times 13}
Me whakarea te \frac{5}{6} ki te -\frac{8}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-40}{78}
Mahia ngā whakarea i roto i te hautanga \frac{5\left(-8\right)}{6\times 13}.
x=-\frac{20}{39}
Whakahekea te hautanga \frac{-40}{78} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}