Aromātai
0.65
Tauwehe
\frac{13}{5 \cdot 2 ^ {2}} = 0.65
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( \frac { 3 } { 4 } + 0.5 ) - ( \frac { 4 } { 5 } - 0.2 )
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}+\frac{1}{2}-\left(\frac{4}{5}-0.2\right)
Me tahuri ki tau ā-ira 0.5 ki te hautau \frac{5}{10}. Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{3}{4}+\frac{2}{4}-\left(\frac{4}{5}-0.2\right)
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{3}{4} me \frac{1}{2} ki te hautau me te tautūnga 4.
\frac{3+2}{4}-\left(\frac{4}{5}-0.2\right)
Tā te mea he rite te tauraro o \frac{3}{4} me \frac{2}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{4}-\left(\frac{4}{5}-0.2\right)
Tāpirihia te 3 ki te 2, ka 5.
\frac{5}{4}-\left(\frac{4}{5}-\frac{1}{5}\right)
Me tahuri ki tau ā-ira 0.2 ki te hautau \frac{2}{10}. Whakahekea te hautanga \frac{2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{4}-\frac{4-1}{5}
Tā te mea he rite te tauraro o \frac{4}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{4}-\frac{3}{5}
Tangohia te 1 i te 4, ka 3.
\frac{25}{20}-\frac{12}{20}
Ko te maha noa iti rawa atu o 4 me 5 ko 20. Me tahuri \frac{5}{4} me \frac{3}{5} ki te hautau me te tautūnga 20.
\frac{25-12}{20}
Tā te mea he rite te tauraro o \frac{25}{20} me \frac{12}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{13}{20}
Tangohia te 12 i te 25, ka 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}