Aromātai
m^{3}
Whakaroha
m^{3}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{2}m^{5}}{m^{2}-\frac{1}{2}m^{2}}
Pahekotia te \frac{3}{2}m^{5} me -m^{5}, ka \frac{1}{2}m^{5}.
\frac{\frac{1}{2}m^{5}}{\frac{1}{2}m^{2}}
Pahekotia te m^{2} me -\frac{1}{2}m^{2}, ka \frac{1}{2}m^{2}.
\frac{\frac{1}{2}m^{3}}{\frac{1}{2}}
Me whakakore tahi te m^{2} i te taurunga me te tauraro.
\frac{m^{3}}{\left(\frac{1}{2}\right)^{0}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{m^{3}}{1}
Tātaihia te \frac{1}{2} mā te pū o 0, kia riro ko 1.
m^{3}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\frac{1}{2}m^{5}}{m^{2}-\frac{1}{2}m^{2}}
Pahekotia te \frac{3}{2}m^{5} me -m^{5}, ka \frac{1}{2}m^{5}.
\frac{\frac{1}{2}m^{5}}{\frac{1}{2}m^{2}}
Pahekotia te m^{2} me -\frac{1}{2}m^{2}, ka \frac{1}{2}m^{2}.
\frac{\frac{1}{2}m^{3}}{\frac{1}{2}}
Me whakakore tahi te m^{2} i te taurunga me te tauraro.
\frac{m^{3}}{\left(\frac{1}{2}\right)^{0}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{m^{3}}{1}
Tātaihia te \frac{1}{2} mā te pū o 0, kia riro ko 1.
m^{3}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}