Aromātai
\frac{1}{9}\approx 0.111111111
Tauwehe
\frac{1}{3 ^ {2}} = 0.1111111111111111
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}\times \frac{2}{9}-\frac{2}{3}\times \frac{1}{3}
Whakawehe \frac{3}{2} ki te \frac{9}{2} mā te whakarea \frac{3}{2} ki te tau huripoki o \frac{9}{2}.
\frac{3\times 2}{2\times 9}-\frac{2}{3}\times \frac{1}{3}
Me whakarea te \frac{3}{2} ki te \frac{2}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{9}-\frac{2}{3}\times \frac{1}{3}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{1}{3}-\frac{2}{3}\times \frac{1}{3}
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{3}+\frac{-2}{3\times 3}
Me whakarea te -\frac{2}{3} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{3}+\frac{-2}{9}
Mahia ngā whakarea i roto i te hautanga \frac{-2}{3\times 3}.
\frac{1}{3}-\frac{2}{9}
Ka taea te hautanga \frac{-2}{9} te tuhi anō ko -\frac{2}{9} mā te tango i te tohu tōraro.
\frac{3}{9}-\frac{2}{9}
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{1}{3} me \frac{2}{9} ki te hautau me te tautūnga 9.
\frac{3-2}{9}
Tā te mea he rite te tauraro o \frac{3}{9} me \frac{2}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{9}
Tangohia te 2 i te 3, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}