Aromātai
-1.26
Tauwehe
-1.26
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{3}{16}-\frac{9}{20}\right)\times 0.8-\frac{0.21}{0.2}
Me tahuri ki tau ā-ira 0.45 ki te hautau \frac{45}{100}. Whakahekea te hautanga \frac{45}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\left(\frac{15}{80}-\frac{36}{80}\right)\times 0.8-\frac{0.21}{0.2}
Ko te maha noa iti rawa atu o 16 me 20 ko 80. Me tahuri \frac{3}{16} me \frac{9}{20} ki te hautau me te tautūnga 80.
\frac{15-36}{80}\times 0.8-\frac{0.21}{0.2}
Tā te mea he rite te tauraro o \frac{15}{80} me \frac{36}{80}, me tango rāua mā te tango i ō raua taurunga.
-\frac{21}{80}\times 0.8-\frac{0.21}{0.2}
Tangohia te 36 i te 15, ka -21.
-\frac{21}{80}\times \frac{4}{5}-\frac{0.21}{0.2}
Me tahuri ki tau ā-ira 0.8 ki te hautau \frac{8}{10}. Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{-21\times 4}{80\times 5}-\frac{0.21}{0.2}
Me whakarea te -\frac{21}{80} ki te \frac{4}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-84}{400}-\frac{0.21}{0.2}
Mahia ngā whakarea i roto i te hautanga \frac{-21\times 4}{80\times 5}.
-\frac{21}{100}-\frac{0.21}{0.2}
Whakahekea te hautanga \frac{-84}{400} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-\frac{21}{100}-\frac{21}{20}
Whakarohaina te \frac{0.21}{0.2} mā te whakarea i te taurunga me te tauraro ki te 100.
-\frac{21}{100}-\frac{105}{100}
Ko te maha noa iti rawa atu o 100 me 20 ko 100. Me tahuri -\frac{21}{100} me \frac{21}{20} ki te hautau me te tautūnga 100.
\frac{-21-105}{100}
Tā te mea he rite te tauraro o -\frac{21}{100} me \frac{105}{100}, me tango rāua mā te tango i ō raua taurunga.
\frac{-126}{100}
Tangohia te 105 i te -21, ka -126.
-\frac{63}{50}
Whakahekea te hautanga \frac{-126}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}