Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{\frac{5}{5}-\frac{2}{5}}\left(2-\frac{9}{5}\right)
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{3}{\frac{5-2}{5}}\left(2-\frac{9}{5}\right)
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{2}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{\frac{3}{5}}\left(2-\frac{9}{5}\right)
Tangohia te 2 i te 5, ka 3.
3\times \frac{5}{3}\left(2-\frac{9}{5}\right)
Whakawehe 3 ki te \frac{3}{5} mā te whakarea 3 ki te tau huripoki o \frac{3}{5}.
5\left(2-\frac{9}{5}\right)
Me whakakore te 3 me te 3.
5\left(\frac{10}{5}-\frac{9}{5}\right)
Me tahuri te 2 ki te hautau \frac{10}{5}.
5\times \frac{10-9}{5}
Tā te mea he rite te tauraro o \frac{10}{5} me \frac{9}{5}, me tango rāua mā te tango i ō raua taurunga.
5\times \frac{1}{5}
Tangohia te 9 i te 10, ka 1.
1
Me whakakore te 5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}