Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{3}{1+a}-\frac{1+a}{1+a}\right)\left(\frac{3}{2-a}-1\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{1+a}{1+a}.
\frac{3-\left(1+a\right)}{1+a}\left(\frac{3}{2-a}-1\right)
Tā te mea he rite te tauraro o \frac{3}{1+a} me \frac{1+a}{1+a}, me tango rāua mā te tango i ō raua taurunga.
\frac{3-1-a}{1+a}\left(\frac{3}{2-a}-1\right)
Mahia ngā whakarea i roto o 3-\left(1+a\right).
\frac{2-a}{1+a}\left(\frac{3}{2-a}-1\right)
Whakakotahitia ngā kupu rite i 3-1-a.
\frac{2-a}{1+a}\left(\frac{3}{2-a}-\frac{2-a}{2-a}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2-a}{2-a}.
\frac{2-a}{1+a}\times \frac{3-\left(2-a\right)}{2-a}
Tā te mea he rite te tauraro o \frac{3}{2-a} me \frac{2-a}{2-a}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-a}{1+a}\times \frac{3-2+a}{2-a}
Mahia ngā whakarea i roto o 3-\left(2-a\right).
\frac{2-a}{1+a}\times \frac{1+a}{2-a}
Whakakotahitia ngā kupu rite i 3-2+a.
\frac{\left(2-a\right)\left(1+a\right)}{\left(1+a\right)\left(2-a\right)}
Me whakarea te \frac{2-a}{1+a} ki te \frac{1+a}{2-a} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1
Me whakakore tahi te \left(a+1\right)\left(-a+2\right) i te taurunga me te tauraro.