Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{xy}{3\times \frac{1}{x}}\right)^{-2}
Me whakakore tahi te 3^{2}y^{2} i te taurunga me te tauraro.
\left(\frac{yx^{2}}{3}\right)^{-2}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(yx^{2}\right)^{-2}}{3^{-2}}
Kia whakarewa i te \frac{yx^{2}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{y^{-2}\left(x^{2}\right)^{-2}}{3^{-2}}
Whakarohaina te \left(yx^{2}\right)^{-2}.
\frac{y^{-2}x^{-4}}{3^{-2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -2 kia riro ai te -4.
\frac{y^{-2}x^{-4}}{\frac{1}{9}}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
y^{-2}x^{-4}\times 9
Whakawehe y^{-2}x^{-4} ki te \frac{1}{9} mā te whakarea y^{-2}x^{-4} ki te tau huripoki o \frac{1}{9}.
\left(\frac{xy}{3\times \frac{1}{x}}\right)^{-2}
Me whakakore tahi te 3^{2}y^{2} i te taurunga me te tauraro.
\left(\frac{yx^{2}}{3}\right)^{-2}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(yx^{2}\right)^{-2}}{3^{-2}}
Kia whakarewa i te \frac{yx^{2}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{y^{-2}\left(x^{2}\right)^{-2}}{3^{-2}}
Whakarohaina te \left(yx^{2}\right)^{-2}.
\frac{y^{-2}x^{-4}}{3^{-2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -2 kia riro ai te -4.
\frac{y^{-2}x^{-4}}{\frac{1}{9}}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
y^{-2}x^{-4}\times 9
Whakawehe y^{-2}x^{-4} ki te \frac{1}{9} mā te whakarea y^{-2}x^{-4} ki te tau huripoki o \frac{1}{9}.