Whakaoti mō a
a = -\frac{3800000 \sqrt{10}}{27} \approx -445061.300319994
a = \frac{3800000 \sqrt{10}}{27} \approx 445061.300319994
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{9}{10}\right)^{3}=\left(\frac{3.8\times 10^{5}}{a}\right)^{2}
Whakahekea te hautanga \frac{27}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{729}{1000}=\left(\frac{3.8\times 10^{5}}{a}\right)^{2}
Tātaihia te \frac{9}{10} mā te pū o 3, kia riro ko \frac{729}{1000}.
\frac{729}{1000}=\left(\frac{3.8\times 100000}{a}\right)^{2}
Tātaihia te 10 mā te pū o 5, kia riro ko 100000.
\frac{729}{1000}=\left(\frac{380000}{a}\right)^{2}
Whakareatia te 3.8 ki te 100000, ka 380000.
\frac{729}{1000}=\frac{380000^{2}}{a^{2}}
Kia whakarewa i te \frac{380000}{a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{729}{1000}=\frac{144400000000}{a^{2}}
Tātaihia te 380000 mā te pū o 2, kia riro ko 144400000000.
\frac{144400000000}{a^{2}}=\frac{729}{1000}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1000\times 144400000000=729a^{2}
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 1000a^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o a^{2},1000.
144400000000000=729a^{2}
Whakareatia te 1000 ki te 144400000000, ka 144400000000000.
729a^{2}=144400000000000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a^{2}=\frac{144400000000000}{729}
Whakawehea ngā taha e rua ki te 729.
a=\frac{3800000\sqrt{10}}{27} a=-\frac{3800000\sqrt{10}}{27}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(\frac{9}{10}\right)^{3}=\left(\frac{3.8\times 10^{5}}{a}\right)^{2}
Whakahekea te hautanga \frac{27}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{729}{1000}=\left(\frac{3.8\times 10^{5}}{a}\right)^{2}
Tātaihia te \frac{9}{10} mā te pū o 3, kia riro ko \frac{729}{1000}.
\frac{729}{1000}=\left(\frac{3.8\times 100000}{a}\right)^{2}
Tātaihia te 10 mā te pū o 5, kia riro ko 100000.
\frac{729}{1000}=\left(\frac{380000}{a}\right)^{2}
Whakareatia te 3.8 ki te 100000, ka 380000.
\frac{729}{1000}=\frac{380000^{2}}{a^{2}}
Kia whakarewa i te \frac{380000}{a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{729}{1000}=\frac{144400000000}{a^{2}}
Tātaihia te 380000 mā te pū o 2, kia riro ko 144400000000.
\frac{144400000000}{a^{2}}=\frac{729}{1000}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{144400000000}{a^{2}}-\frac{729}{1000}=0
Tangohia te \frac{729}{1000} mai i ngā taha e rua.
\frac{144400000000\times 1000}{1000a^{2}}-\frac{729a^{2}}{1000a^{2}}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a^{2} me 1000 ko 1000a^{2}. Whakareatia \frac{144400000000}{a^{2}} ki te \frac{1000}{1000}. Whakareatia \frac{729}{1000} ki te \frac{a^{2}}{a^{2}}.
\frac{144400000000\times 1000-729a^{2}}{1000a^{2}}=0
Tā te mea he rite te tauraro o \frac{144400000000\times 1000}{1000a^{2}} me \frac{729a^{2}}{1000a^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{144400000000000-729a^{2}}{1000a^{2}}=0
Mahia ngā whakarea i roto o 144400000000\times 1000-729a^{2}.
144400000000000-729a^{2}=0
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 1000a^{2}.
-729a^{2}+144400000000000=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-729\right)\times 144400000000000}}{2\left(-729\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -729 mō a, 0 mō b, me 144400000000000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-729\right)\times 144400000000000}}{2\left(-729\right)}
Pūrua 0.
a=\frac{0±\sqrt{2916\times 144400000000000}}{2\left(-729\right)}
Whakareatia -4 ki te -729.
a=\frac{0±\sqrt{421070400000000000}}{2\left(-729\right)}
Whakareatia 2916 ki te 144400000000000.
a=\frac{0±205200000\sqrt{10}}{2\left(-729\right)}
Tuhia te pūtakerua o te 421070400000000000.
a=\frac{0±205200000\sqrt{10}}{-1458}
Whakareatia 2 ki te -729.
a=-\frac{3800000\sqrt{10}}{27}
Nā, me whakaoti te whārite a=\frac{0±205200000\sqrt{10}}{-1458} ina he tāpiri te ±.
a=\frac{3800000\sqrt{10}}{27}
Nā, me whakaoti te whārite a=\frac{0±205200000\sqrt{10}}{-1458} ina he tango te ±.
a=-\frac{3800000\sqrt{10}}{27} a=\frac{3800000\sqrt{10}}{27}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}