Aromātai
\frac{1}{6}\approx 0.166666667
Tauwehe
\frac{1}{2 \cdot 3} = 0.16666666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{5}\times \frac{\left(\frac{3}{2}\right)^{-2}}{\left(\frac{2}{5}\right)^{3}}-4\times \left(\frac{3}{7}\right)^{0}
Tātaihia te \frac{27}{125} mā te pū o \frac{1}{3}, kia riro ko \frac{3}{5}.
\frac{3}{5}\times \frac{\frac{4}{9}}{\left(\frac{2}{5}\right)^{3}}-4\times \left(\frac{3}{7}\right)^{0}
Tātaihia te \frac{3}{2} mā te pū o -2, kia riro ko \frac{4}{9}.
\frac{3}{5}\times \frac{\frac{4}{9}}{\frac{8}{125}}-4\times \left(\frac{3}{7}\right)^{0}
Tātaihia te \frac{2}{5} mā te pū o 3, kia riro ko \frac{8}{125}.
\frac{3}{5}\times \frac{4}{9}\times \frac{125}{8}-4\times \left(\frac{3}{7}\right)^{0}
Whakawehe \frac{4}{9} ki te \frac{8}{125} mā te whakarea \frac{4}{9} ki te tau huripoki o \frac{8}{125}.
\frac{3}{5}\times \frac{125}{18}-4\times \left(\frac{3}{7}\right)^{0}
Whakareatia te \frac{4}{9} ki te \frac{125}{8}, ka \frac{125}{18}.
\frac{25}{6}-4\times \left(\frac{3}{7}\right)^{0}
Whakareatia te \frac{3}{5} ki te \frac{125}{18}, ka \frac{25}{6}.
\frac{25}{6}-4\times 1
Tātaihia te \frac{3}{7} mā te pū o 0, kia riro ko 1.
\frac{25}{6}-4
Whakareatia te 4 ki te 1, ka 4.
\frac{1}{6}
Tangohia te 4 i te \frac{25}{6}, ka \frac{1}{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}