Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2x^{\frac{1}{2}}\right)^{6}}{\left(z^{-\frac{1}{6}}y^{\frac{2}{3}}\right)^{6}}
Kia whakarewa i te \frac{2x^{\frac{1}{2}}}{z^{-\frac{1}{6}}y^{\frac{2}{3}}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{2^{6}\left(x^{\frac{1}{2}}\right)^{6}}{\left(z^{-\frac{1}{6}}y^{\frac{2}{3}}\right)^{6}}
Whakarohaina te \left(2x^{\frac{1}{2}}\right)^{6}.
\frac{2^{6}x^{3}}{\left(z^{-\frac{1}{6}}y^{\frac{2}{3}}\right)^{6}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{1}{2} me te 6 kia riro ai te 3.
\frac{64x^{3}}{\left(z^{-\frac{1}{6}}y^{\frac{2}{3}}\right)^{6}}
Tātaihia te 2 mā te pū o 6, kia riro ko 64.
\frac{64x^{3}}{\left(z^{-\frac{1}{6}}\right)^{6}\left(y^{\frac{2}{3}}\right)^{6}}
Whakarohaina te \left(z^{-\frac{1}{6}}y^{\frac{2}{3}}\right)^{6}.
\frac{64x^{3}}{z^{-1}\left(y^{\frac{2}{3}}\right)^{6}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -\frac{1}{6} me te 6 kia riro ai te -1.
\frac{64x^{3}}{z^{-1}y^{4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{2}{3} me te 6 kia riro ai te 4.
\frac{\left(2x^{\frac{1}{2}}\right)^{6}}{\left(z^{-\frac{1}{6}}y^{\frac{2}{3}}\right)^{6}}
Kia whakarewa i te \frac{2x^{\frac{1}{2}}}{z^{-\frac{1}{6}}y^{\frac{2}{3}}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{2^{6}\left(x^{\frac{1}{2}}\right)^{6}}{\left(z^{-\frac{1}{6}}y^{\frac{2}{3}}\right)^{6}}
Whakarohaina te \left(2x^{\frac{1}{2}}\right)^{6}.
\frac{2^{6}x^{3}}{\left(z^{-\frac{1}{6}}y^{\frac{2}{3}}\right)^{6}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{1}{2} me te 6 kia riro ai te 3.
\frac{64x^{3}}{\left(z^{-\frac{1}{6}}y^{\frac{2}{3}}\right)^{6}}
Tātaihia te 2 mā te pū o 6, kia riro ko 64.
\frac{64x^{3}}{\left(z^{-\frac{1}{6}}\right)^{6}\left(y^{\frac{2}{3}}\right)^{6}}
Whakarohaina te \left(z^{-\frac{1}{6}}y^{\frac{2}{3}}\right)^{6}.
\frac{64x^{3}}{z^{-1}\left(y^{\frac{2}{3}}\right)^{6}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -\frac{1}{6} me te 6 kia riro ai te -1.
\frac{64x^{3}}{z^{-1}y^{4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{2}{3} me te 6 kia riro ai te 4.