Aromātai
\frac{1}{n^{6}m^{8}}
Whakaroha
\frac{1}{n^{6}m^{8}}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{2m^{2}n^{3}p^{4}}{\left(-p\right)m^{6}n^{2}\left(-2\right)n^{4}p^{3}}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 3 kia riro ai te 6.
\left(\frac{2m^{2}n^{3}p^{4}}{\left(-p\right)m^{6}n^{6}\left(-2\right)p^{3}}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 4 kia riro ai te 6.
\left(\frac{p}{-\left(-p\right)n^{3}m^{4}}\right)^{2}
Me whakakore tahi te 2m^{2}n^{3}p^{3} i te taurunga me te tauraro.
\left(\frac{p}{pn^{3}m^{4}}\right)^{2}
Whakareatia te -1 ki te -1, ka 1.
\left(\frac{1}{n^{3}m^{4}}\right)^{2}
Me whakakore tahi te p i te taurunga me te tauraro.
\frac{1^{2}}{\left(n^{3}m^{4}\right)^{2}}
Kia whakarewa i te \frac{1}{n^{3}m^{4}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{1}{\left(n^{3}m^{4}\right)^{2}}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{1}{\left(n^{3}\right)^{2}\left(m^{4}\right)^{2}}
Whakarohaina te \left(n^{3}m^{4}\right)^{2}.
\frac{1}{n^{6}\left(m^{4}\right)^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\frac{1}{n^{6}m^{8}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 2 kia riro ai te 8.
\left(\frac{2m^{2}n^{3}p^{4}}{\left(-p\right)m^{6}n^{2}\left(-2\right)n^{4}p^{3}}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 3 kia riro ai te 6.
\left(\frac{2m^{2}n^{3}p^{4}}{\left(-p\right)m^{6}n^{6}\left(-2\right)p^{3}}\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 4 kia riro ai te 6.
\left(\frac{p}{-\left(-p\right)n^{3}m^{4}}\right)^{2}
Me whakakore tahi te 2m^{2}n^{3}p^{3} i te taurunga me te tauraro.
\left(\frac{p}{pn^{3}m^{4}}\right)^{2}
Whakareatia te -1 ki te -1, ka 1.
\left(\frac{1}{n^{3}m^{4}}\right)^{2}
Me whakakore tahi te p i te taurunga me te tauraro.
\frac{1^{2}}{\left(n^{3}m^{4}\right)^{2}}
Kia whakarewa i te \frac{1}{n^{3}m^{4}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{1}{\left(n^{3}m^{4}\right)^{2}}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{1}{\left(n^{3}\right)^{2}\left(m^{4}\right)^{2}}
Whakarohaina te \left(n^{3}m^{4}\right)^{2}.
\frac{1}{n^{6}\left(m^{4}\right)^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\frac{1}{n^{6}m^{8}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 2 kia riro ai te 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}