Aromātai
\frac{a^{2}+b^{2}}{a-b}
Whakaroha
\frac{a^{2}+b^{2}}{a-b}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
( \frac { 2 a } { a - b } + \frac { a - b } { b } ) \cdot b
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{2ab}{b\left(a-b\right)}+\frac{\left(a-b\right)\left(a-b\right)}{b\left(a-b\right)}\right)b
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-b me b ko b\left(a-b\right). Whakareatia \frac{2a}{a-b} ki te \frac{b}{b}. Whakareatia \frac{a-b}{b} ki te \frac{a-b}{a-b}.
\frac{2ab+\left(a-b\right)\left(a-b\right)}{b\left(a-b\right)}b
Tā te mea he rite te tauraro o \frac{2ab}{b\left(a-b\right)} me \frac{\left(a-b\right)\left(a-b\right)}{b\left(a-b\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2ab+a^{2}-ab-ab+b^{2}}{b\left(a-b\right)}b
Mahia ngā whakarea i roto o 2ab+\left(a-b\right)\left(a-b\right).
\frac{b^{2}+a^{2}}{b\left(a-b\right)}b
Whakakotahitia ngā kupu rite i 2ab+a^{2}-ab-ab+b^{2}.
\frac{\left(b^{2}+a^{2}\right)b}{b\left(a-b\right)}
Tuhia te \frac{b^{2}+a^{2}}{b\left(a-b\right)}b hei hautanga kotahi.
\frac{a^{2}+b^{2}}{a-b}
Me whakakore tahi te b i te taurunga me te tauraro.
\left(\frac{2ab}{b\left(a-b\right)}+\frac{\left(a-b\right)\left(a-b\right)}{b\left(a-b\right)}\right)b
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-b me b ko b\left(a-b\right). Whakareatia \frac{2a}{a-b} ki te \frac{b}{b}. Whakareatia \frac{a-b}{b} ki te \frac{a-b}{a-b}.
\frac{2ab+\left(a-b\right)\left(a-b\right)}{b\left(a-b\right)}b
Tā te mea he rite te tauraro o \frac{2ab}{b\left(a-b\right)} me \frac{\left(a-b\right)\left(a-b\right)}{b\left(a-b\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2ab+a^{2}-ab-ab+b^{2}}{b\left(a-b\right)}b
Mahia ngā whakarea i roto o 2ab+\left(a-b\right)\left(a-b\right).
\frac{b^{2}+a^{2}}{b\left(a-b\right)}b
Whakakotahitia ngā kupu rite i 2ab+a^{2}-ab-ab+b^{2}.
\frac{\left(b^{2}+a^{2}\right)b}{b\left(a-b\right)}
Tuhia te \frac{b^{2}+a^{2}}{b\left(a-b\right)}b hei hautanga kotahi.
\frac{a^{2}+b^{2}}{a-b}
Me whakakore tahi te b i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}