Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \left(\frac{3}{a}\right)^{-3}
Kia whakarewa i te \frac{2a^{2}}{3b} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \frac{3^{-3}}{a^{-3}}
Kia whakarewa i te \frac{3}{a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Me whakarea te \frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}} ki te \frac{3^{-3}}{a^{-3}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2^{-2}\left(a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Whakarohaina te \left(2a^{2}\right)^{-2}.
\frac{2^{-2}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -2 kia riro ai te -4.
\frac{\frac{1}{4}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Tātaihia te 2 mā te pū o -2, kia riro ko \frac{1}{4}.
\frac{\frac{1}{4}a^{-4}\times \frac{1}{27}}{\left(3b\right)^{-2}a^{-3}}
Tātaihia te 3 mā te pū o -3, kia riro ko \frac{1}{27}.
\frac{\frac{1}{108}a^{-4}}{\left(3b\right)^{-2}a^{-3}}
Whakareatia te \frac{1}{4} ki te \frac{1}{27}, ka \frac{1}{108}.
\frac{\frac{1}{108}a^{-4}}{3^{-2}b^{-2}a^{-3}}
Whakarohaina te \left(3b\right)^{-2}.
\frac{\frac{1}{108}a^{-4}}{\frac{1}{9}b^{-2}a^{-3}}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
\frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1}{108\times \frac{1}{9}b^{-2}a^{1}}
Tuhia te \frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}} hei hautanga kotahi.
\frac{1}{12b^{-2}a^{1}}
Whakareatia te 108 ki te \frac{1}{9}, ka 12.
\frac{1}{12b^{-2}a}
Tātaihia te a mā te pū o 1, kia riro ko a.
\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \left(\frac{3}{a}\right)^{-3}
Kia whakarewa i te \frac{2a^{2}}{3b} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \frac{3^{-3}}{a^{-3}}
Kia whakarewa i te \frac{3}{a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Me whakarea te \frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}} ki te \frac{3^{-3}}{a^{-3}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2^{-2}\left(a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Whakarohaina te \left(2a^{2}\right)^{-2}.
\frac{2^{-2}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -2 kia riro ai te -4.
\frac{\frac{1}{4}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Tātaihia te 2 mā te pū o -2, kia riro ko \frac{1}{4}.
\frac{\frac{1}{4}a^{-4}\times \frac{1}{27}}{\left(3b\right)^{-2}a^{-3}}
Tātaihia te 3 mā te pū o -3, kia riro ko \frac{1}{27}.
\frac{\frac{1}{108}a^{-4}}{\left(3b\right)^{-2}a^{-3}}
Whakareatia te \frac{1}{4} ki te \frac{1}{27}, ka \frac{1}{108}.
\frac{\frac{1}{108}a^{-4}}{3^{-2}b^{-2}a^{-3}}
Whakarohaina te \left(3b\right)^{-2}.
\frac{\frac{1}{108}a^{-4}}{\frac{1}{9}b^{-2}a^{-3}}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
\frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1}{108\times \frac{1}{9}b^{-2}a^{1}}
Tuhia te \frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}} hei hautanga kotahi.
\frac{1}{12b^{-2}a^{1}}
Whakareatia te 108 ki te \frac{1}{9}, ka 12.
\frac{1}{12b^{-2}a}
Tātaihia te a mā te pū o 1, kia riro ko a.