Aromātai
\frac{b^{2}}{12a}
Whakaroha
\frac{b^{2}}{12a}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \left(\frac{3}{a}\right)^{-3}
Kia whakarewa i te \frac{2a^{2}}{3b} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \frac{3^{-3}}{a^{-3}}
Kia whakarewa i te \frac{3}{a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Me whakarea te \frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}} ki te \frac{3^{-3}}{a^{-3}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2^{-2}\left(a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Whakarohaina te \left(2a^{2}\right)^{-2}.
\frac{2^{-2}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -2 kia riro ai te -4.
\frac{\frac{1}{4}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Tātaihia te 2 mā te pū o -2, kia riro ko \frac{1}{4}.
\frac{\frac{1}{4}a^{-4}\times \frac{1}{27}}{\left(3b\right)^{-2}a^{-3}}
Tātaihia te 3 mā te pū o -3, kia riro ko \frac{1}{27}.
\frac{\frac{1}{108}a^{-4}}{\left(3b\right)^{-2}a^{-3}}
Whakareatia te \frac{1}{4} ki te \frac{1}{27}, ka \frac{1}{108}.
\frac{\frac{1}{108}a^{-4}}{3^{-2}b^{-2}a^{-3}}
Whakarohaina te \left(3b\right)^{-2}.
\frac{\frac{1}{108}a^{-4}}{\frac{1}{9}b^{-2}a^{-3}}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
\frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1}{108\times \frac{1}{9}b^{-2}a^{1}}
Tuhia te \frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}} hei hautanga kotahi.
\frac{1}{12b^{-2}a^{1}}
Whakareatia te 108 ki te \frac{1}{9}, ka 12.
\frac{1}{12b^{-2}a}
Tātaihia te a mā te pū o 1, kia riro ko a.
\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \left(\frac{3}{a}\right)^{-3}
Kia whakarewa i te \frac{2a^{2}}{3b} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \frac{3^{-3}}{a^{-3}}
Kia whakarewa i te \frac{3}{a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Me whakarea te \frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}} ki te \frac{3^{-3}}{a^{-3}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2^{-2}\left(a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Whakarohaina te \left(2a^{2}\right)^{-2}.
\frac{2^{-2}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -2 kia riro ai te -4.
\frac{\frac{1}{4}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Tātaihia te 2 mā te pū o -2, kia riro ko \frac{1}{4}.
\frac{\frac{1}{4}a^{-4}\times \frac{1}{27}}{\left(3b\right)^{-2}a^{-3}}
Tātaihia te 3 mā te pū o -3, kia riro ko \frac{1}{27}.
\frac{\frac{1}{108}a^{-4}}{\left(3b\right)^{-2}a^{-3}}
Whakareatia te \frac{1}{4} ki te \frac{1}{27}, ka \frac{1}{108}.
\frac{\frac{1}{108}a^{-4}}{3^{-2}b^{-2}a^{-3}}
Whakarohaina te \left(3b\right)^{-2}.
\frac{\frac{1}{108}a^{-4}}{\frac{1}{9}b^{-2}a^{-3}}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
\frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1}{108\times \frac{1}{9}b^{-2}a^{1}}
Tuhia te \frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}} hei hautanga kotahi.
\frac{1}{12b^{-2}a^{1}}
Whakareatia te 108 ki te \frac{1}{9}, ka 12.
\frac{1}{12b^{-2}a}
Tātaihia te a mā te pū o 1, kia riro ko a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}