Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\left(1-\frac{1}{2}\right)+2^{-6}}{-\frac{3}{4}-\left(-3\right)+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -3 kia riro ai te -6.
\frac{2\times \frac{1}{2}+2^{-6}}{-\frac{3}{4}-\left(-3\right)+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Tangohia te \frac{1}{2} i te 1, ka \frac{1}{2}.
\frac{1+2^{-6}}{-\frac{3}{4}-\left(-3\right)+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
\frac{1+\frac{1}{64}}{-\frac{3}{4}-\left(-3\right)+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Tātaihia te 2 mā te pū o -6, kia riro ko \frac{1}{64}.
\frac{\frac{65}{64}}{-\frac{3}{4}-\left(-3\right)+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Tāpirihia te 1 ki te \frac{1}{64}, ka \frac{65}{64}.
\frac{\frac{65}{64}}{-\frac{3}{4}+3+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Ko te tauaro o -3 ko 3.
\frac{\frac{65}{64}}{\frac{9}{4}+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Tāpirihia te -\frac{3}{4} ki te 3, ka \frac{9}{4}.
\frac{\frac{65}{64}}{\frac{9}{4}+\frac{3}{20}}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Whakareatia te \frac{2}{5} ki te \frac{3}{8}, ka \frac{3}{20}.
\frac{\frac{65}{64}}{\frac{12}{5}}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Tāpirihia te \frac{9}{4} ki te \frac{3}{20}, ka \frac{12}{5}.
\frac{65}{64}\times \frac{5}{12}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Whakawehe \frac{65}{64} ki te \frac{12}{5} mā te whakarea \frac{65}{64} ki te tau huripoki o \frac{12}{5}.
\frac{325}{768}=\frac{325}{768}\text{ and }\frac{325}{768}=0\times 4232
Whakareatia te \frac{65}{64} ki te \frac{5}{12}, ka \frac{325}{768}.
\text{true}\text{ and }\frac{325}{768}=0\times 4232
Whakatauritea te \frac{325}{768} me te \frac{325}{768}.
\text{true}\text{ and }\frac{325}{768}=0
Whakareatia te 0 ki te 4232, ka 0.
\text{true}\text{ and }\text{false}
Whakatauritea te \frac{325}{768} me te 0.
\text{false}
Ko te kōmititanga tōrunga o \text{true} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}