Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{2}{7}\right)^{-14}=\left(\frac{2}{7}\right)^{x}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -3 me te -11 kia riro ai te -14.
\frac{678223072849}{16384}=\left(\frac{2}{7}\right)^{x}
Tātaihia te \frac{2}{7} mā te pū o -14, kia riro ko \frac{678223072849}{16384}.
\left(\frac{2}{7}\right)^{x}=\frac{678223072849}{16384}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(\left(\frac{2}{7}\right)^{x})=\log(\frac{678223072849}{16384})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
x\log(\frac{2}{7})=\log(\frac{678223072849}{16384})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
x=\frac{\log(\frac{678223072849}{16384})}{\log(\frac{2}{7})}
Whakawehea ngā taha e rua ki te \log(\frac{2}{7}).
x=\log_{\frac{2}{7}}\left(\frac{678223072849}{16384}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).