Aromātai
\frac{18}{7}\approx 2.571428571
Tauwehe
\frac{2 \cdot 3 ^ {2}}{7} = 2\frac{4}{7} = 2.5714285714285716
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{7}\times \frac{3+2}{3}+\frac{1}{7}\times \frac{2}{3}+\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}
Whakareatia te 1 ki te 3, ka 3.
\frac{2}{7}\times \frac{5}{3}+\frac{1}{7}\times \frac{2}{3}+\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}
Tāpirihia te 3 ki te 2, ka 5.
\frac{2\times 5}{7\times 3}+\frac{1}{7}\times \frac{2}{3}+\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}
Me whakarea te \frac{2}{7} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{10}{21}+\frac{1}{7}\times \frac{2}{3}+\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 5}{7\times 3}.
\frac{10}{21}+\frac{1\times 2}{7\times 3}+\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}
Me whakarea te \frac{1}{7} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{10}{21}+\frac{2}{21}+\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 2}{7\times 3}.
\frac{10+2}{21}+\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}
Tā te mea he rite te tauraro o \frac{10}{21} me \frac{2}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12}{21}+\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}
Tāpirihia te 10 ki te 2, ka 12.
\frac{4}{7}+\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}
Whakahekea te hautanga \frac{12}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{4}{7}+\frac{2}{3}\times \frac{8+1}{4}+\frac{2}{3}\times \frac{3}{4}
Whakareatia te 2 ki te 4, ka 8.
\frac{4}{7}+\frac{2}{3}\times \frac{9}{4}+\frac{2}{3}\times \frac{3}{4}
Tāpirihia te 8 ki te 1, ka 9.
\frac{4}{7}+\frac{2\times 9}{3\times 4}+\frac{2}{3}\times \frac{3}{4}
Me whakarea te \frac{2}{3} ki te \frac{9}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{4}{7}+\frac{18}{12}+\frac{2}{3}\times \frac{3}{4}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 9}{3\times 4}.
\frac{4}{7}+\frac{3}{2}+\frac{2}{3}\times \frac{3}{4}
Whakahekea te hautanga \frac{18}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{8}{14}+\frac{21}{14}+\frac{2}{3}\times \frac{3}{4}
Ko te maha noa iti rawa atu o 7 me 2 ko 14. Me tahuri \frac{4}{7} me \frac{3}{2} ki te hautau me te tautūnga 14.
\frac{8+21}{14}+\frac{2}{3}\times \frac{3}{4}
Tā te mea he rite te tauraro o \frac{8}{14} me \frac{21}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{29}{14}+\frac{2}{3}\times \frac{3}{4}
Tāpirihia te 8 ki te 21, ka 29.
\frac{29}{14}+\frac{2\times 3}{3\times 4}
Me whakarea te \frac{2}{3} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{29}{14}+\frac{2}{4}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{29}{14}+\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{29}{14}+\frac{7}{14}
Ko te maha noa iti rawa atu o 14 me 2 ko 14. Me tahuri \frac{29}{14} me \frac{1}{2} ki te hautau me te tautūnga 14.
\frac{29+7}{14}
Tā te mea he rite te tauraro o \frac{29}{14} me \frac{7}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{36}{14}
Tāpirihia te 29 ki te 7, ka 36.
\frac{18}{7}
Whakahekea te hautanga \frac{36}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}