Aromātai
-\frac{1}{120}\approx -0.008333333
Tauwehe
-\frac{1}{120} = -0.008333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{8}{12}-\frac{9}{12}\right)\left(\frac{3}{5}-\frac{1}{2}\right)
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{2}{3} me \frac{3}{4} ki te hautau me te tautūnga 12.
\frac{8-9}{12}\left(\frac{3}{5}-\frac{1}{2}\right)
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{9}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{12}\left(\frac{3}{5}-\frac{1}{2}\right)
Tangohia te 9 i te 8, ka -1.
-\frac{1}{12}\left(\frac{6}{10}-\frac{5}{10}\right)
Ko te maha noa iti rawa atu o 5 me 2 ko 10. Me tahuri \frac{3}{5} me \frac{1}{2} ki te hautau me te tautūnga 10.
-\frac{1}{12}\times \frac{6-5}{10}
Tā te mea he rite te tauraro o \frac{6}{10} me \frac{5}{10}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{12}\times \frac{1}{10}
Tangohia te 5 i te 6, ka 1.
\frac{-1}{12\times 10}
Me whakarea te -\frac{1}{12} ki te \frac{1}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1}{120}
Mahia ngā whakarea i roto i te hautanga \frac{-1}{12\times 10}.
-\frac{1}{120}
Ka taea te hautanga \frac{-1}{120} te tuhi anō ko -\frac{1}{120} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}