Tīpoka ki ngā ihirangi matua
Manatoko
teka
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4}{9}+\left(\frac{1}{4}\right)^{-2}-\left(\sqrt{\frac{4}{9}}-\frac{1}{2}\right)=16111
Tātaihia te \frac{2}{3} mā te pū o 2, kia riro ko \frac{4}{9}.
\frac{4}{9}+16-\left(\sqrt{\frac{4}{9}}-\frac{1}{2}\right)=16111
Tātaihia te \frac{1}{4} mā te pū o -2, kia riro ko 16.
\frac{148}{9}-\left(\sqrt{\frac{4}{9}}-\frac{1}{2}\right)=16111
Tāpirihia te \frac{4}{9} ki te 16, ka \frac{148}{9}.
\frac{148}{9}-\left(\frac{2}{3}-\frac{1}{2}\right)=16111
Tuhia anō te pūtake rua o te whakawehenga \frac{4}{9} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{9}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{148}{9}-\frac{1}{6}=16111
Tangohia te \frac{1}{2} i te \frac{2}{3}, ka \frac{1}{6}.
\frac{293}{18}=16111
Tangohia te \frac{1}{6} i te \frac{148}{9}, ka \frac{293}{18}.
\frac{293}{18}=\frac{289998}{18}
Me tahuri te 16111 ki te hautau \frac{289998}{18}.
\text{false}
Whakatauritea te \frac{293}{18} me te \frac{289998}{18}.