Aromātai
-\frac{9}{4}=-2.25
Tauwehe
-\frac{9}{4} = -2\frac{1}{4} = -2.25
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{2}{3}\right)^{-7}\left(-\frac{3}{2}\right)^{-5}+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -4 me te -3 kia riro ai te -7.
\frac{2187}{128}\left(-\frac{3}{2}\right)^{-5}+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Tātaihia te \frac{2}{3} mā te pū o -7, kia riro ko \frac{2187}{128}.
\frac{2187}{128}\left(-\frac{32}{243}\right)+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Tātaihia te -\frac{3}{2} mā te pū o -5, kia riro ko -\frac{32}{243}.
-\frac{9}{4}+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Whakareatia te \frac{2187}{128} ki te -\frac{32}{243}, ka -\frac{9}{4}.
-\frac{9}{4}+8\left(\frac{7}{4}\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Tangohia te \frac{1}{4} i te 2, ka \frac{7}{4}.
-\frac{9}{4}+8\left(\frac{1}{4}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Whakareatia te \frac{7}{4} ki te \frac{1}{7}, ka \frac{1}{4}.
-\frac{9}{4}+8\left(-\frac{1}{2}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Tangohia te \frac{3}{4} i te \frac{1}{4}, ka -\frac{1}{2}.
-\frac{9}{4}-4+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Whakareatia te 8 ki te -\frac{1}{2}, ka -4.
-\frac{25}{4}+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Tangohia te 4 i te -\frac{9}{4}, ka -\frac{25}{4}.
-\frac{25}{4}+\left(\frac{9}{4}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Tātaihia te -\frac{3}{2} mā te pū o 2, kia riro ko \frac{9}{4}.
-\frac{25}{4}+\left(\frac{9}{4}\times \frac{1}{9}\right)^{-1}
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
-\frac{25}{4}+\left(\frac{1}{4}\right)^{-1}
Whakareatia te \frac{9}{4} ki te \frac{1}{9}, ka \frac{1}{4}.
-\frac{25}{4}+4
Tātaihia te \frac{1}{4} mā te pū o -1, kia riro ko 4.
-\frac{9}{4}
Tāpirihia te -\frac{25}{4} ki te 4, ka -\frac{9}{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}