Aromātai
-1525
Tauwehe
-1525
Tohaina
Kua tāruatia ki te papatopenga
1^{2}-5^{2}\times 5^{3}-10^{0}+\left(5\times 8\right)^{2}
Whakawehea te 2 ki te 2, kia riro ko 1.
1^{2}-5^{5}-10^{0}+\left(5\times 8\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 3 kia riro ai te 5.
1-5^{5}-10^{0}+\left(5\times 8\right)^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
1-3125-10^{0}+\left(5\times 8\right)^{2}
Tātaihia te 5 mā te pū o 5, kia riro ko 3125.
-3124-10^{0}+\left(5\times 8\right)^{2}
Tangohia te 3125 i te 1, ka -3124.
-3124-1+\left(5\times 8\right)^{2}
Tātaihia te 10 mā te pū o 0, kia riro ko 1.
-3125+\left(5\times 8\right)^{2}
Tangohia te 1 i te -3124, ka -3125.
-3125+40^{2}
Whakareatia te 5 ki te 8, ka 40.
-3125+1600
Tātaihia te 40 mā te pū o 2, kia riro ko 1600.
-1525
Tāpirihia te -3125 ki te 1600, ka -1525.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}