Aromātai
-\frac{227}{17}\approx -13.352941176
Tauwehe
-\frac{227}{17} = -13\frac{6}{17} = -13.352941176470589
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2}{15}+\frac{225}{15}}{\frac{1\times 3+2}{3}-\frac{2\times 5+4}{5}}
Me tahuri te 15 ki te hautau \frac{225}{15}.
\frac{\frac{2+225}{15}}{\frac{1\times 3+2}{3}-\frac{2\times 5+4}{5}}
Tā te mea he rite te tauraro o \frac{2}{15} me \frac{225}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{227}{15}}{\frac{1\times 3+2}{3}-\frac{2\times 5+4}{5}}
Tāpirihia te 2 ki te 225, ka 227.
\frac{\frac{227}{15}}{\frac{3+2}{3}-\frac{2\times 5+4}{5}}
Whakareatia te 1 ki te 3, ka 3.
\frac{\frac{227}{15}}{\frac{5}{3}-\frac{2\times 5+4}{5}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{227}{15}}{\frac{5}{3}-\frac{10+4}{5}}
Whakareatia te 2 ki te 5, ka 10.
\frac{\frac{227}{15}}{\frac{5}{3}-\frac{14}{5}}
Tāpirihia te 10 ki te 4, ka 14.
\frac{\frac{227}{15}}{\frac{25}{15}-\frac{42}{15}}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{5}{3} me \frac{14}{5} ki te hautau me te tautūnga 15.
\frac{\frac{227}{15}}{\frac{25-42}{15}}
Tā te mea he rite te tauraro o \frac{25}{15} me \frac{42}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{227}{15}}{-\frac{17}{15}}
Tangohia te 42 i te 25, ka -17.
\frac{227}{15}\left(-\frac{15}{17}\right)
Whakawehe \frac{227}{15} ki te -\frac{17}{15} mā te whakarea \frac{227}{15} ki te tau huripoki o -\frac{17}{15}.
\frac{227\left(-15\right)}{15\times 17}
Me whakarea te \frac{227}{15} ki te -\frac{15}{17} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-3405}{255}
Mahia ngā whakarea i roto i te hautanga \frac{227\left(-15\right)}{15\times 17}.
-\frac{227}{17}
Whakahekea te hautanga \frac{-3405}{255} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}