Whakaoti mō x
x = -\frac{336}{5} = -67\frac{1}{5} = -67.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{17}{3}-43=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\frac{17}{3}-\frac{129}{3}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Me tahuri te 43 ki te hautau \frac{129}{3}.
\frac{17-129}{3}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Tā te mea he rite te tauraro o \frac{17}{3} me \frac{129}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{112}{3}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Tangohia te 129 i te 17, ka -112.
-\frac{112}{3}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{4}{5}-\frac{\frac{4}{9}}{2}\right)
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{112}{3}=\frac{5}{7}x\left(1-\frac{\frac{4}{9}}{2}\right)
Me whakakore atu te \frac{5}{4} me tōna tau utu \frac{4}{5}.
-\frac{112}{3}=\frac{5}{7}x\left(1-\frac{4}{9\times 2}\right)
Tuhia te \frac{\frac{4}{9}}{2} hei hautanga kotahi.
-\frac{112}{3}=\frac{5}{7}x\left(1-\frac{4}{18}\right)
Whakareatia te 9 ki te 2, ka 18.
-\frac{112}{3}=\frac{5}{7}x\left(1-\frac{2}{9}\right)
Whakahekea te hautanga \frac{4}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{112}{3}=\frac{5}{7}x\left(\frac{9}{9}-\frac{2}{9}\right)
Me tahuri te 1 ki te hautau \frac{9}{9}.
-\frac{112}{3}=\frac{5}{7}x\times \frac{9-2}{9}
Tā te mea he rite te tauraro o \frac{9}{9} me \frac{2}{9}, me tango rāua mā te tango i ō raua taurunga.
-\frac{112}{3}=\frac{5}{7}x\times \frac{7}{9}
Tangohia te 2 i te 9, ka 7.
-\frac{112}{3}=\frac{5\times 7}{7\times 9}x
Me whakarea te \frac{5}{7} ki te \frac{7}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{112}{3}=\frac{5}{9}x
Me whakakore tahi te 7 i te taurunga me te tauraro.
\frac{5}{9}x=-\frac{112}{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=-\frac{112}{3}\times \frac{9}{5}
Me whakarea ngā taha e rua ki te \frac{9}{5}, te tau utu o \frac{5}{9}.
x=\frac{-112\times 9}{3\times 5}
Me whakarea te -\frac{112}{3} ki te \frac{9}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-1008}{15}
Mahia ngā whakarea i roto i te hautanga \frac{-112\times 9}{3\times 5}.
x=-\frac{336}{5}
Whakahekea te hautanga \frac{-1008}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}