Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{13\times 7}{5\times 26}\times \frac{-50}{7}\times \frac{-1}{5}
Me whakarea te \frac{13}{5} ki te \frac{7}{26} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{91}{130}\times \frac{-50}{7}\times \frac{-1}{5}
Mahia ngā whakarea i roto i te hautanga \frac{13\times 7}{5\times 26}.
\frac{7}{10}\times \frac{-50}{7}\times \frac{-1}{5}
Whakahekea te hautanga \frac{91}{130} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 13.
\frac{7}{10}\left(-\frac{50}{7}\right)\times \frac{-1}{5}
Ka taea te hautanga \frac{-50}{7} te tuhi anō ko -\frac{50}{7} mā te tango i te tohu tōraro.
\frac{7\left(-50\right)}{10\times 7}\times \frac{-1}{5}
Me whakarea te \frac{7}{10} ki te -\frac{50}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-50}{10}\times \frac{-1}{5}
Me whakakore tahi te 7 i te taurunga me te tauraro.
-5\times \frac{-1}{5}
Whakawehea te -50 ki te 10, kia riro ko -5.
-5\left(-\frac{1}{5}\right)
Ka taea te hautanga \frac{-1}{5} te tuhi anō ko -\frac{1}{5} mā te tango i te tohu tōraro.
1
Whakareatia -5 ki te -\frac{1}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}