Whakaoti mō y
y=8
y = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{13}{2}y-y^{2}=-12
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{13}{2}-y ki te y.
\frac{13}{2}y-y^{2}+12=0
Me tāpiri te 12 ki ngā taha e rua.
-y^{2}+\frac{13}{2}y+12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\frac{13}{2}±\sqrt{\left(\frac{13}{2}\right)^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, \frac{13}{2} mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}-4\left(-1\right)\times 12}}{2\left(-1\right)}
Pūruatia \frac{13}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}+4\times 12}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
y=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}+48}}{2\left(-1\right)}
Whakareatia 4 ki te 12.
y=\frac{-\frac{13}{2}±\sqrt{\frac{361}{4}}}{2\left(-1\right)}
Tāpiri \frac{169}{4} ki te 48.
y=\frac{-\frac{13}{2}±\frac{19}{2}}{2\left(-1\right)}
Tuhia te pūtakerua o te \frac{361}{4}.
y=\frac{-\frac{13}{2}±\frac{19}{2}}{-2}
Whakareatia 2 ki te -1.
y=\frac{3}{-2}
Nā, me whakaoti te whārite y=\frac{-\frac{13}{2}±\frac{19}{2}}{-2} ina he tāpiri te ±. Tāpiri -\frac{13}{2} ki te \frac{19}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-\frac{3}{2}
Whakawehe 3 ki te -2.
y=-\frac{16}{-2}
Nā, me whakaoti te whārite y=\frac{-\frac{13}{2}±\frac{19}{2}}{-2} ina he tango te ±. Tango \frac{19}{2} mai i -\frac{13}{2} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=8
Whakawehe -16 ki te -2.
y=-\frac{3}{2} y=8
Kua oti te whārite te whakatau.
\frac{13}{2}y-y^{2}=-12
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{13}{2}-y ki te y.
-y^{2}+\frac{13}{2}y=-12
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-y^{2}+\frac{13}{2}y}{-1}=-\frac{12}{-1}
Whakawehea ngā taha e rua ki te -1.
y^{2}+\frac{\frac{13}{2}}{-1}y=-\frac{12}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y^{2}-\frac{13}{2}y=-\frac{12}{-1}
Whakawehe \frac{13}{2} ki te -1.
y^{2}-\frac{13}{2}y=12
Whakawehe -12 ki te -1.
y^{2}-\frac{13}{2}y+\left(-\frac{13}{4}\right)^{2}=12+\left(-\frac{13}{4}\right)^{2}
Whakawehea te -\frac{13}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{4}. Nā, tāpiria te pūrua o te -\frac{13}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{13}{2}y+\frac{169}{16}=12+\frac{169}{16}
Pūruatia -\frac{13}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{13}{2}y+\frac{169}{16}=\frac{361}{16}
Tāpiri 12 ki te \frac{169}{16}.
\left(y-\frac{13}{4}\right)^{2}=\frac{361}{16}
Tauwehea y^{2}-\frac{13}{2}y+\frac{169}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{13}{4}\right)^{2}}=\sqrt{\frac{361}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{13}{4}=\frac{19}{4} y-\frac{13}{4}=-\frac{19}{4}
Whakarūnātia.
y=8 y=-\frac{3}{2}
Me tāpiri \frac{13}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}