Whakaoti mō x
x=\frac{2}{3}\approx 0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{11}{9}-x=x\times \frac{\frac{17}{3}}{\frac{34}{5}}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\frac{11}{9}-x=x\times \frac{17}{3}\times \frac{5}{34}
Whakawehe \frac{17}{3} ki te \frac{34}{5} mā te whakarea \frac{17}{3} ki te tau huripoki o \frac{34}{5}.
\frac{11}{9}-x=x\times \frac{17\times 5}{3\times 34}
Me whakarea te \frac{17}{3} ki te \frac{5}{34} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{11}{9}-x=x\times \frac{85}{102}
Mahia ngā whakarea i roto i te hautanga \frac{17\times 5}{3\times 34}.
\frac{11}{9}-x=x\times \frac{5}{6}
Whakahekea te hautanga \frac{85}{102} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 17.
\frac{11}{9}-x-x\times \frac{5}{6}=0
Tangohia te x\times \frac{5}{6} mai i ngā taha e rua.
\frac{11}{9}-\frac{11}{6}x=0
Pahekotia te -x me -x\times \frac{5}{6}, ka -\frac{11}{6}x.
-\frac{11}{6}x=-\frac{11}{9}
Tangohia te \frac{11}{9} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{11}{9}\left(-\frac{6}{11}\right)
Me whakarea ngā taha e rua ki te -\frac{6}{11}, te tau utu o -\frac{11}{6}.
x=\frac{-11\left(-6\right)}{9\times 11}
Me whakarea te -\frac{11}{9} ki te -\frac{6}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{66}{99}
Mahia ngā whakarea i roto i te hautanga \frac{-11\left(-6\right)}{9\times 11}.
x=\frac{2}{3}
Whakahekea te hautanga \frac{66}{99} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 33.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}