Aromātai
\frac{14}{3}\approx 4.666666667
Tauwehe
\frac{2 \cdot 7}{3} = 4\frac{2}{3} = 4.666666666666667
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{10\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{5}{\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
Whakangāwaritia te tauraro o \frac{10}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\left(\frac{10\sqrt{5}}{5}-\frac{5}{\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
Ko te pūrua o \sqrt{5} ko 5.
\left(2\sqrt{5}-\frac{5}{\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
Whakawehea te 10\sqrt{5} ki te 5, kia riro ko 2\sqrt{5}.
\left(2\sqrt{5}-\frac{5\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
Whakangāwaritia te tauraro o \frac{5}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\left(2\sqrt{5}-\frac{5\sqrt{3}}{3}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
Ko te pūrua o \sqrt{3} ko 3.
\left(\frac{3\times 2\sqrt{5}}{3}-\frac{5\sqrt{3}}{3}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2\sqrt{5} ki te \frac{3}{3}.
\frac{3\times 2\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
Tā te mea he rite te tauraro o \frac{3\times 2\sqrt{5}}{3} me \frac{5\sqrt{3}}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
Mahia ngā whakarea i roto o 3\times 2\sqrt{5}-5\sqrt{3}.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{4}{\sqrt{5}}\right)
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{3}+\frac{4}{\sqrt{5}}\right)
Ko te pūrua o \sqrt{3} ko 3.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{3}+\frac{4\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)
Whakangāwaritia te tauraro o \frac{4}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{3}+\frac{4\sqrt{5}}{5}\right)
Ko te pūrua o \sqrt{5} ko 5.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{5\times 2\sqrt{3}}{15}+\frac{3\times 4\sqrt{5}}{15}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 5 ko 15. Whakareatia \frac{2\sqrt{3}}{3} ki te \frac{5}{5}. Whakareatia \frac{4\sqrt{5}}{5} ki te \frac{3}{3}.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\times \frac{5\times 2\sqrt{3}+3\times 4\sqrt{5}}{15}
Tā te mea he rite te tauraro o \frac{5\times 2\sqrt{3}}{15} me \frac{3\times 4\sqrt{5}}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\times \frac{10\sqrt{3}+12\sqrt{5}}{15}
Mahia ngā whakarea i roto o 5\times 2\sqrt{3}+3\times 4\sqrt{5}.
\frac{\left(6\sqrt{5}-5\sqrt{3}\right)\left(10\sqrt{3}+12\sqrt{5}\right)}{3\times 15}
Me whakarea te \frac{6\sqrt{5}-5\sqrt{3}}{3} ki te \frac{10\sqrt{3}+12\sqrt{5}}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(6\sqrt{5}-5\sqrt{3}\right)\left(10\sqrt{3}+12\sqrt{5}\right)}{45}
Whakareatia te 3 ki te 15, ka 45.
\frac{60\sqrt{3}\sqrt{5}+72\left(\sqrt{5}\right)^{2}-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 6\sqrt{5}-5\sqrt{3} ki ia tau o 10\sqrt{3}+12\sqrt{5}.
\frac{60\sqrt{15}+72\left(\sqrt{5}\right)^{2}-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{60\sqrt{15}+72\times 5-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
Ko te pūrua o \sqrt{5} ko 5.
\frac{60\sqrt{15}+360-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
Whakareatia te 72 ki te 5, ka 360.
\frac{60\sqrt{15}+360-50\times 3-60\sqrt{3}\sqrt{5}}{45}
Ko te pūrua o \sqrt{3} ko 3.
\frac{60\sqrt{15}+360-150-60\sqrt{3}\sqrt{5}}{45}
Whakareatia te -50 ki te 3, ka -150.
\frac{60\sqrt{15}+210-60\sqrt{3}\sqrt{5}}{45}
Tangohia te 150 i te 360, ka 210.
\frac{60\sqrt{15}+210-60\sqrt{15}}{45}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{210}{45}
Pahekotia te 60\sqrt{15} me -60\sqrt{15}, ka 0.
\frac{14}{3}
Whakahekea te hautanga \frac{210}{45} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}