Aromātai
\frac{1}{x+y}
Whakaroha
\frac{1}{x+y}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
( \frac { 1 } { y } - \frac { 1 } { x + y } ) : \frac { x } { y }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{x+y}{y\left(x+y\right)}-\frac{y}{y\left(x+y\right)}}{\frac{x}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y me x+y ko y\left(x+y\right). Whakareatia \frac{1}{y} ki te \frac{x+y}{x+y}. Whakareatia \frac{1}{x+y} ki te \frac{y}{y}.
\frac{\frac{x+y-y}{y\left(x+y\right)}}{\frac{x}{y}}
Tā te mea he rite te tauraro o \frac{x+y}{y\left(x+y\right)} me \frac{y}{y\left(x+y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x}{y\left(x+y\right)}}{\frac{x}{y}}
Whakakotahitia ngā kupu rite i x+y-y.
\frac{xy}{y\left(x+y\right)x}
Whakawehe \frac{x}{y\left(x+y\right)} ki te \frac{x}{y} mā te whakarea \frac{x}{y\left(x+y\right)} ki te tau huripoki o \frac{x}{y}.
\frac{1}{x+y}
Me whakakore tahi te xy i te taurunga me te tauraro.
\frac{\frac{x+y}{y\left(x+y\right)}-\frac{y}{y\left(x+y\right)}}{\frac{x}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y me x+y ko y\left(x+y\right). Whakareatia \frac{1}{y} ki te \frac{x+y}{x+y}. Whakareatia \frac{1}{x+y} ki te \frac{y}{y}.
\frac{\frac{x+y-y}{y\left(x+y\right)}}{\frac{x}{y}}
Tā te mea he rite te tauraro o \frac{x+y}{y\left(x+y\right)} me \frac{y}{y\left(x+y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x}{y\left(x+y\right)}}{\frac{x}{y}}
Whakakotahitia ngā kupu rite i x+y-y.
\frac{xy}{y\left(x+y\right)x}
Whakawehe \frac{x}{y\left(x+y\right)} ki te \frac{x}{y} mā te whakarea \frac{x}{y\left(x+y\right)} ki te tau huripoki o \frac{x}{y}.
\frac{1}{x+y}
Me whakakore tahi te xy i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}