Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+1 me x-1 ko \left(x-1\right)\left(x+1\right). Whakareatia \frac{1}{x+1} ki te \frac{x-1}{x-1}. Whakareatia \frac{1}{x-1} ki te \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Tā te mea he rite te tauraro o \frac{x-1}{\left(x-1\right)\left(x+1\right)} me \frac{x+1}{\left(x-1\right)\left(x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Mahia ngā whakarea i roto o x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Whakakotahitia ngā kupu rite i x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Whakawehe \frac{-2}{\left(x-1\right)\left(x+1\right)} ki te \frac{2}{1-x} mā te whakarea \frac{-2}{\left(x-1\right)\left(x+1\right)} ki te tau huripoki o \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Unuhia te tohu tōraro i roto o 1-x.
\frac{-\left(-1\right)}{x+1}
Me whakakore tahi te 2\left(x-1\right) i te taurunga me te tauraro.
\frac{1}{x+1}
Whakareatia te -1 ki te -1, ka 1.
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+1 me x-1 ko \left(x-1\right)\left(x+1\right). Whakareatia \frac{1}{x+1} ki te \frac{x-1}{x-1}. Whakareatia \frac{1}{x-1} ki te \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Tā te mea he rite te tauraro o \frac{x-1}{\left(x-1\right)\left(x+1\right)} me \frac{x+1}{\left(x-1\right)\left(x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Mahia ngā whakarea i roto o x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Whakakotahitia ngā kupu rite i x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Whakawehe \frac{-2}{\left(x-1\right)\left(x+1\right)} ki te \frac{2}{1-x} mā te whakarea \frac{-2}{\left(x-1\right)\left(x+1\right)} ki te tau huripoki o \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Unuhia te tohu tōraro i roto o 1-x.
\frac{-\left(-1\right)}{x+1}
Me whakakore tahi te 2\left(x-1\right) i te taurunga me te tauraro.
\frac{1}{x+1}
Whakareatia te -1 ki te -1, ka 1.