Aromātai
\frac{3n}{m+n}
Whakaroha
\frac{3n}{m+n}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{m+n}{\left(m+n\right)\left(m-n\right)}-\frac{m-n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m-n me m+n ko \left(m+n\right)\left(m-n\right). Whakareatia \frac{1}{m-n} ki te \frac{m+n}{m+n}. Whakareatia \frac{1}{m+n} ki te \frac{m-n}{m-n}.
\frac{\frac{m+n-\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Tā te mea he rite te tauraro o \frac{m+n}{\left(m+n\right)\left(m-n\right)} me \frac{m-n}{\left(m+n\right)\left(m-n\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{m+n-m+n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Mahia ngā whakarea i roto o m+n-\left(m-n\right).
\frac{\frac{2n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Whakakotahitia ngā kupu rite i m+n-m+n.
\frac{2n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)\times 2}
Whakawehe \frac{2n}{\left(m+n\right)\left(m-n\right)} ki te \frac{2}{3m-3n} mā te whakarea \frac{2n}{\left(m+n\right)\left(m-n\right)} ki te tau huripoki o \frac{2}{3m-3n}.
\frac{n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3n\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3n}{m+n}
Me whakakore tahi te m-n i te taurunga me te tauraro.
\frac{\frac{m+n}{\left(m+n\right)\left(m-n\right)}-\frac{m-n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m-n me m+n ko \left(m+n\right)\left(m-n\right). Whakareatia \frac{1}{m-n} ki te \frac{m+n}{m+n}. Whakareatia \frac{1}{m+n} ki te \frac{m-n}{m-n}.
\frac{\frac{m+n-\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Tā te mea he rite te tauraro o \frac{m+n}{\left(m+n\right)\left(m-n\right)} me \frac{m-n}{\left(m+n\right)\left(m-n\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{m+n-m+n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Mahia ngā whakarea i roto o m+n-\left(m-n\right).
\frac{\frac{2n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Whakakotahitia ngā kupu rite i m+n-m+n.
\frac{2n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)\times 2}
Whakawehe \frac{2n}{\left(m+n\right)\left(m-n\right)} ki te \frac{2}{3m-3n} mā te whakarea \frac{2n}{\left(m+n\right)\left(m-n\right)} ki te tau huripoki o \frac{2}{3m-3n}.
\frac{n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3n\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3n}{m+n}
Me whakakore tahi te m-n i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}