Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{m+n}{\left(m+n\right)\left(m-n\right)}-\frac{m-n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m-n me m+n ko \left(m+n\right)\left(m-n\right). Whakareatia \frac{1}{m-n} ki te \frac{m+n}{m+n}. Whakareatia \frac{1}{m+n} ki te \frac{m-n}{m-n}.
\frac{\frac{m+n-\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Tā te mea he rite te tauraro o \frac{m+n}{\left(m+n\right)\left(m-n\right)} me \frac{m-n}{\left(m+n\right)\left(m-n\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{m+n-m+n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Mahia ngā whakarea i roto o m+n-\left(m-n\right).
\frac{\frac{2n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Whakakotahitia ngā kupu rite i m+n-m+n.
\frac{2n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)\times 2}
Whakawehe \frac{2n}{\left(m+n\right)\left(m-n\right)} ki te \frac{2}{3m-3n} mā te whakarea \frac{2n}{\left(m+n\right)\left(m-n\right)} ki te tau huripoki o \frac{2}{3m-3n}.
\frac{n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3n\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3n}{m+n}
Me whakakore tahi te m-n i te taurunga me te tauraro.
\frac{\frac{m+n}{\left(m+n\right)\left(m-n\right)}-\frac{m-n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m-n me m+n ko \left(m+n\right)\left(m-n\right). Whakareatia \frac{1}{m-n} ki te \frac{m+n}{m+n}. Whakareatia \frac{1}{m+n} ki te \frac{m-n}{m-n}.
\frac{\frac{m+n-\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Tā te mea he rite te tauraro o \frac{m+n}{\left(m+n\right)\left(m-n\right)} me \frac{m-n}{\left(m+n\right)\left(m-n\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{m+n-m+n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Mahia ngā whakarea i roto o m+n-\left(m-n\right).
\frac{\frac{2n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Whakakotahitia ngā kupu rite i m+n-m+n.
\frac{2n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)\times 2}
Whakawehe \frac{2n}{\left(m+n\right)\left(m-n\right)} ki te \frac{2}{3m-3n} mā te whakarea \frac{2n}{\left(m+n\right)\left(m-n\right)} ki te tau huripoki o \frac{2}{3m-3n}.
\frac{n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3n\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3n}{m+n}
Me whakakore tahi te m-n i te taurunga me te tauraro.