Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{5q}{45q\alpha }+\frac{9\alpha }{45q\alpha }\right)\times \frac{\alpha ^{2}}{28}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9\alpha me 5q ko 45q\alpha . Whakareatia \frac{1}{9\alpha } ki te \frac{5q}{5q}. Whakareatia \frac{1}{5q} ki te \frac{9\alpha }{9\alpha }.
\frac{5q+9\alpha }{45q\alpha }\times \frac{\alpha ^{2}}{28}
Tā te mea he rite te tauraro o \frac{5q}{45q\alpha } me \frac{9\alpha }{45q\alpha }, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(5q+9\alpha \right)\alpha ^{2}}{45q\alpha \times 28}
Me whakarea te \frac{5q+9\alpha }{45q\alpha } ki te \frac{\alpha ^{2}}{28} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\alpha \left(5q+9\alpha \right)}{28\times 45q}
Me whakakore tahi te \alpha i te taurunga me te tauraro.
\frac{\alpha \left(5q+9\alpha \right)}{1260q}
Whakareatia te 28 ki te 45, ka 1260.
\frac{5\alpha q+9\alpha ^{2}}{1260q}
Whakamahia te āhuatanga tohatoha hei whakarea te \alpha ki te 5q+9\alpha .
\left(\frac{5q}{45q\alpha }+\frac{9\alpha }{45q\alpha }\right)\times \frac{\alpha ^{2}}{28}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9\alpha me 5q ko 45q\alpha . Whakareatia \frac{1}{9\alpha } ki te \frac{5q}{5q}. Whakareatia \frac{1}{5q} ki te \frac{9\alpha }{9\alpha }.
\frac{5q+9\alpha }{45q\alpha }\times \frac{\alpha ^{2}}{28}
Tā te mea he rite te tauraro o \frac{5q}{45q\alpha } me \frac{9\alpha }{45q\alpha }, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(5q+9\alpha \right)\alpha ^{2}}{45q\alpha \times 28}
Me whakarea te \frac{5q+9\alpha }{45q\alpha } ki te \frac{\alpha ^{2}}{28} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\alpha \left(5q+9\alpha \right)}{28\times 45q}
Me whakakore tahi te \alpha i te taurunga me te tauraro.
\frac{\alpha \left(5q+9\alpha \right)}{1260q}
Whakareatia te 28 ki te 45, ka 1260.
\frac{5\alpha q+9\alpha ^{2}}{1260q}
Whakamahia te āhuatanga tohatoha hei whakarea te \alpha ki te 5q+9\alpha .