Aromātai
\frac{\alpha ^{2}}{140q}+\frac{\alpha }{252}
Whakaroha
\frac{\alpha ^{2}}{140q}+\frac{\alpha }{252}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{5q}{45q\alpha }+\frac{9\alpha }{45q\alpha }\right)\times \frac{\alpha ^{2}}{28}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9\alpha me 5q ko 45q\alpha . Whakareatia \frac{1}{9\alpha } ki te \frac{5q}{5q}. Whakareatia \frac{1}{5q} ki te \frac{9\alpha }{9\alpha }.
\frac{5q+9\alpha }{45q\alpha }\times \frac{\alpha ^{2}}{28}
Tā te mea he rite te tauraro o \frac{5q}{45q\alpha } me \frac{9\alpha }{45q\alpha }, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(5q+9\alpha \right)\alpha ^{2}}{45q\alpha \times 28}
Me whakarea te \frac{5q+9\alpha }{45q\alpha } ki te \frac{\alpha ^{2}}{28} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\alpha \left(5q+9\alpha \right)}{28\times 45q}
Me whakakore tahi te \alpha i te taurunga me te tauraro.
\frac{\alpha \left(5q+9\alpha \right)}{1260q}
Whakareatia te 28 ki te 45, ka 1260.
\frac{5\alpha q+9\alpha ^{2}}{1260q}
Whakamahia te āhuatanga tohatoha hei whakarea te \alpha ki te 5q+9\alpha .
\left(\frac{5q}{45q\alpha }+\frac{9\alpha }{45q\alpha }\right)\times \frac{\alpha ^{2}}{28}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9\alpha me 5q ko 45q\alpha . Whakareatia \frac{1}{9\alpha } ki te \frac{5q}{5q}. Whakareatia \frac{1}{5q} ki te \frac{9\alpha }{9\alpha }.
\frac{5q+9\alpha }{45q\alpha }\times \frac{\alpha ^{2}}{28}
Tā te mea he rite te tauraro o \frac{5q}{45q\alpha } me \frac{9\alpha }{45q\alpha }, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(5q+9\alpha \right)\alpha ^{2}}{45q\alpha \times 28}
Me whakarea te \frac{5q+9\alpha }{45q\alpha } ki te \frac{\alpha ^{2}}{28} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\alpha \left(5q+9\alpha \right)}{28\times 45q}
Me whakakore tahi te \alpha i te taurunga me te tauraro.
\frac{\alpha \left(5q+9\alpha \right)}{1260q}
Whakareatia te 28 ki te 45, ka 1260.
\frac{5\alpha q+9\alpha ^{2}}{1260q}
Whakamahia te āhuatanga tohatoha hei whakarea te \alpha ki te 5q+9\alpha .
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}