Aromātai
y^{2}-\frac{9y}{14}+\frac{1}{14}
Whakaroha
y^{2}-\frac{9y}{14}+\frac{1}{14}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{7}\times \frac{1}{2}+\frac{1}{7}\left(-1\right)y-y\times \frac{1}{2}+y^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \frac{1}{7}-y ki ia tau o \frac{1}{2}-y.
\frac{1\times 1}{7\times 2}+\frac{1}{7}\left(-1\right)y-y\times \frac{1}{2}+y^{2}
Me whakarea te \frac{1}{7} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{14}+\frac{1}{7}\left(-1\right)y-y\times \frac{1}{2}+y^{2}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{7\times 2}.
\frac{1}{14}-\frac{1}{7}y-y\times \frac{1}{2}+y^{2}
Whakareatia te \frac{1}{7} ki te -1, ka -\frac{1}{7}.
\frac{1}{14}-\frac{1}{7}y-\frac{1}{2}y+y^{2}
Whakareatia te -1 ki te \frac{1}{2}, ka -\frac{1}{2}.
\frac{1}{14}-\frac{9}{14}y+y^{2}
Pahekotia te -\frac{1}{7}y me -\frac{1}{2}y, ka -\frac{9}{14}y.
\frac{1}{7}\times \frac{1}{2}+\frac{1}{7}\left(-1\right)y-y\times \frac{1}{2}+y^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \frac{1}{7}-y ki ia tau o \frac{1}{2}-y.
\frac{1\times 1}{7\times 2}+\frac{1}{7}\left(-1\right)y-y\times \frac{1}{2}+y^{2}
Me whakarea te \frac{1}{7} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{14}+\frac{1}{7}\left(-1\right)y-y\times \frac{1}{2}+y^{2}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{7\times 2}.
\frac{1}{14}-\frac{1}{7}y-y\times \frac{1}{2}+y^{2}
Whakareatia te \frac{1}{7} ki te -1, ka -\frac{1}{7}.
\frac{1}{14}-\frac{1}{7}y-\frac{1}{2}y+y^{2}
Whakareatia te -1 ki te \frac{1}{2}, ka -\frac{1}{2}.
\frac{1}{14}-\frac{9}{14}y+y^{2}
Pahekotia te -\frac{1}{7}y me -\frac{1}{2}y, ka -\frac{9}{14}y.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}