Aromātai
\frac{13}{6}\approx 2.166666667
Tauwehe
\frac{13}{2 \cdot 3} = 2\frac{1}{6} = 2.1666666666666665
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( \frac { 1 } { 6 } - \frac { 1 } { 3 } ) \cdot ( - 13 ) =
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{6}-\frac{2}{6}\right)\left(-13\right)
Ko te maha noa iti rawa atu o 6 me 3 ko 6. Me tahuri \frac{1}{6} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{1-2}{6}\left(-13\right)
Tā te mea he rite te tauraro o \frac{1}{6} me \frac{2}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{6}\left(-13\right)
Tangohia te 2 i te 1, ka -1.
\frac{-\left(-13\right)}{6}
Tuhia te -\frac{1}{6}\left(-13\right) hei hautanga kotahi.
\frac{13}{6}
Whakareatia te -1 ki te -13, ka 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}