Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{1}{6}+\frac{2}{3}\right)\left(\frac{15}{14}-\frac{11}{7}\right)+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\left(\frac{1}{6}+\frac{4}{6}\right)\left(\frac{15}{14}-\frac{11}{7}\right)+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Ko te maha noa iti rawa atu o 6 me 3 ko 6. Me tahuri \frac{1}{6} me \frac{2}{3} ki te hautau me te tautūnga 6.
\frac{1+4}{6}\left(\frac{15}{14}-\frac{11}{7}\right)+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Tā te mea he rite te tauraro o \frac{1}{6} me \frac{4}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{6}\left(\frac{15}{14}-\frac{11}{7}\right)+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Tāpirihia te 1 ki te 4, ka 5.
\frac{5}{6}\left(\frac{15}{14}-\frac{22}{14}\right)+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Ko te maha noa iti rawa atu o 14 me 7 ko 14. Me tahuri \frac{15}{14} me \frac{11}{7} ki te hautau me te tautūnga 14.
\frac{5}{6}\times \frac{15-22}{14}+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Tā te mea he rite te tauraro o \frac{15}{14} me \frac{22}{14}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{6}\times \frac{-7}{14}+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Tangohia te 22 i te 15, ka -7.
\frac{5}{6}\left(-\frac{1}{2}\right)+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Whakahekea te hautanga \frac{-7}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{5\left(-1\right)}{6\times 2}+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Me whakarea te \frac{5}{6} ki te -\frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-5}{12}+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Mahia ngā whakarea i roto i te hautanga \frac{5\left(-1\right)}{6\times 2}.
-\frac{5}{12}+\frac{\frac{10}{8}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Ka taea te hautanga \frac{-5}{12} te tuhi anō ko -\frac{5}{12} mā te tango i te tohu tōraro.
-\frac{5}{12}+\frac{\frac{5}{4}-\frac{7}{6}}{\left(-\frac{1}{3}\right)^{3}}
Whakahekea te hautanga \frac{10}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{5}{12}+\frac{\frac{15}{12}-\frac{14}{12}}{\left(-\frac{1}{3}\right)^{3}}
Ko te maha noa iti rawa atu o 4 me 6 ko 12. Me tahuri \frac{5}{4} me \frac{7}{6} ki te hautau me te tautūnga 12.
-\frac{5}{12}+\frac{\frac{15-14}{12}}{\left(-\frac{1}{3}\right)^{3}}
Tā te mea he rite te tauraro o \frac{15}{12} me \frac{14}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{12}+\frac{\frac{1}{12}}{\left(-\frac{1}{3}\right)^{3}}
Tangohia te 14 i te 15, ka 1.
-\frac{5}{12}+\frac{\frac{1}{12}}{-\frac{1}{27}}
Tātaihia te -\frac{1}{3} mā te pū o 3, kia riro ko -\frac{1}{27}.
-\frac{5}{12}+\frac{1}{12}\left(-27\right)
Whakawehe \frac{1}{12} ki te -\frac{1}{27} mā te whakarea \frac{1}{12} ki te tau huripoki o -\frac{1}{27}.
-\frac{5}{12}+\frac{-27}{12}
Whakareatia te \frac{1}{12} ki te -27, ka \frac{-27}{12}.
-\frac{5}{12}-\frac{9}{4}
Whakahekea te hautanga \frac{-27}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{5}{12}-\frac{27}{12}
Ko te maha noa iti rawa atu o 12 me 4 ko 12. Me tahuri -\frac{5}{12} me \frac{9}{4} ki te hautau me te tautūnga 12.
\frac{-5-27}{12}
Tā te mea he rite te tauraro o -\frac{5}{12} me \frac{27}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{-32}{12}
Tangohia te 27 i te -5, ka -32.
-\frac{8}{3}
Whakahekea te hautanga \frac{-32}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.