Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1-\left(\frac{1}{5}x\right)^{2}+\left(\frac{x}{5}-\frac{5}{3}\right)^{2}=0
Whakaarohia te \left(\frac{1}{5}x+1\right)\left(1-\frac{1}{5}x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
1-\left(\frac{1}{5}\right)^{2}x^{2}+\left(\frac{x}{5}-\frac{5}{3}\right)^{2}=0
Whakarohaina te \left(\frac{1}{5}x\right)^{2}.
1-\frac{1}{25}x^{2}+\left(\frac{x}{5}-\frac{5}{3}\right)^{2}=0
Tātaihia te \frac{1}{5} mā te pū o 2, kia riro ko \frac{1}{25}.
1-\frac{1}{25}x^{2}+\left(\frac{3x}{15}-\frac{5\times 5}{15}\right)^{2}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 3 ko 15. Whakareatia \frac{x}{5} ki te \frac{3}{3}. Whakareatia \frac{5}{3} ki te \frac{5}{5}.
1-\frac{1}{25}x^{2}+\left(\frac{3x-5\times 5}{15}\right)^{2}=0
Tā te mea he rite te tauraro o \frac{3x}{15} me \frac{5\times 5}{15}, me tango rāua mā te tango i ō raua taurunga.
1-\frac{1}{25}x^{2}+\left(\frac{3x-25}{15}\right)^{2}=0
Mahia ngā whakarea i roto o 3x-5\times 5.
1-\frac{1}{25}x^{2}+\frac{\left(3x-25\right)^{2}}{15^{2}}=0
Kia whakarewa i te \frac{3x-25}{15} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
1-\frac{1}{25}x^{2}+\frac{9x^{2}-150x+625}{15^{2}}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-25\right)^{2}.
1-\frac{1}{25}x^{2}+\frac{9x^{2}-150x+625}{225}=0
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
1-\frac{1}{25}x^{2}+\frac{1}{25}x^{2}-\frac{2}{3}x+\frac{25}{9}=0
Whakawehea ia wā o 9x^{2}-150x+625 ki te 225, kia riro ko \frac{1}{25}x^{2}-\frac{2}{3}x+\frac{25}{9}.
1-\frac{2}{3}x+\frac{25}{9}=0
Pahekotia te -\frac{1}{25}x^{2} me \frac{1}{25}x^{2}, ka 0.
\frac{34}{9}-\frac{2}{3}x=0
Tāpirihia te 1 ki te \frac{25}{9}, ka \frac{34}{9}.
-\frac{2}{3}x=-\frac{34}{9}
Tangohia te \frac{34}{9} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{34}{9}\left(-\frac{3}{2}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{2}, te tau utu o -\frac{2}{3}.
x=\frac{17}{3}
Whakareatia te -\frac{34}{9} ki te -\frac{3}{2}, ka \frac{17}{3}.