( \frac { 1 } { 5 } ( x - 10 ) > \frac { 1 } { 10 } - \frac { 2 } { 15 }
Whakaoti mō x
x>\frac{59}{6}
Graph
Pātaitai
5 raruraru e ōrite ana ki:
( \frac { 1 } { 5 } ( x - 10 ) > \frac { 1 } { 10 } - \frac { 2 } { 15 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}x+\frac{1}{5}\left(-10\right)>\frac{1}{10}-\frac{2}{15}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{5} ki te x-10.
\frac{1}{5}x+\frac{-10}{5}>\frac{1}{10}-\frac{2}{15}
Whakareatia te \frac{1}{5} ki te -10, ka \frac{-10}{5}.
\frac{1}{5}x-2>\frac{1}{10}-\frac{2}{15}
Whakawehea te -10 ki te 5, kia riro ko -2.
\frac{1}{5}x-2>\frac{3}{30}-\frac{4}{30}
Ko te maha noa iti rawa atu o 10 me 15 ko 30. Me tahuri \frac{1}{10} me \frac{2}{15} ki te hautau me te tautūnga 30.
\frac{1}{5}x-2>\frac{3-4}{30}
Tā te mea he rite te tauraro o \frac{3}{30} me \frac{4}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{5}x-2>-\frac{1}{30}
Tangohia te 4 i te 3, ka -1.
\frac{1}{5}x>-\frac{1}{30}+2
Me tāpiri te 2 ki ngā taha e rua.
\frac{1}{5}x>-\frac{1}{30}+\frac{60}{30}
Me tahuri te 2 ki te hautau \frac{60}{30}.
\frac{1}{5}x>\frac{-1+60}{30}
Tā te mea he rite te tauraro o -\frac{1}{30} me \frac{60}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{5}x>\frac{59}{30}
Tāpirihia te -1 ki te 60, ka 59.
x>\frac{59}{30}\times 5
Me whakarea ngā taha e rua ki te 5, te tau utu o \frac{1}{5}. I te mea he tōrunga te \frac{1}{5}, kāore e huri te ahunga koreōrite.
x>\frac{59\times 5}{30}
Tuhia te \frac{59}{30}\times 5 hei hautanga kotahi.
x>\frac{295}{30}
Whakareatia te 59 ki te 5, ka 295.
x>\frac{59}{6}
Whakahekea te hautanga \frac{295}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}