Aromātai
\frac{320}{89}+\frac{200}{89}i\approx 3.595505618+2.247191011i
Wāhi Tūturu
\frac{320}{89} = 3\frac{53}{89} = 3.595505617977528
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
( \frac { 1 } { 5 } + \frac { 1 } { 8 i } ) ^ { - 1 }
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{5}+\frac{i}{-8}\right)^{-1}
Me whakarea tahi te taurunga me te tauraro o \frac{1}{8i} ki te wae pohewa i.
\left(\frac{1}{5}-\frac{1}{8}i\right)^{-1}
Whakawehea te i ki te -8, kia riro ko -\frac{1}{8}i.
\frac{320}{89}+\frac{200}{89}i
Tātaihia te \frac{1}{5}-\frac{1}{8}i mā te pū o -1, kia riro ko \frac{320}{89}+\frac{200}{89}i.
Re(\left(\frac{1}{5}+\frac{i}{-8}\right)^{-1})
Me whakarea tahi te taurunga me te tauraro o \frac{1}{8i} ki te wae pohewa i.
Re(\left(\frac{1}{5}-\frac{1}{8}i\right)^{-1})
Whakawehea te i ki te -8, kia riro ko -\frac{1}{8}i.
Re(\frac{320}{89}+\frac{200}{89}i)
Tātaihia te \frac{1}{5}-\frac{1}{8}i mā te pū o -1, kia riro ko \frac{320}{89}+\frac{200}{89}i.
\frac{320}{89}
Ko te wāhi tūturu o \frac{320}{89}+\frac{200}{89}i ko \frac{320}{89}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}