Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{1}{4}x\right)^{2}-\left(\frac{1}{3}y\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{4}\right)^{2}x^{2}-\left(\frac{1}{3}y\right)^{2}
Whakarohaina te \left(\frac{1}{4}x\right)^{2}.
\frac{1}{16}x^{2}-\left(\frac{1}{3}y\right)^{2}
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\frac{1}{16}x^{2}-\left(\frac{1}{3}\right)^{2}y^{2}
Whakarohaina te \left(\frac{1}{3}y\right)^{2}.
\frac{1}{16}x^{2}-\frac{1}{9}y^{2}
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
\left(\frac{1}{4}x\right)^{2}-\left(\frac{1}{3}y\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{4}\right)^{2}x^{2}-\left(\frac{1}{3}y\right)^{2}
Whakarohaina te \left(\frac{1}{4}x\right)^{2}.
\frac{1}{16}x^{2}-\left(\frac{1}{3}y\right)^{2}
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\frac{1}{16}x^{2}-\left(\frac{1}{3}\right)^{2}y^{2}
Whakarohaina te \left(\frac{1}{3}y\right)^{2}.
\frac{1}{16}x^{2}-\frac{1}{9}y^{2}
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.