Aromātai
-\frac{1}{2}=-0.5
Tauwehe
-\frac{1}{2} = -0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{5}{20}-\frac{8}{20}}{\frac{1}{2}-\frac{1}{5}}
Ko te maha noa iti rawa atu o 4 me 5 ko 20. Me tahuri \frac{1}{4} me \frac{2}{5} ki te hautau me te tautūnga 20.
\frac{\frac{5-8}{20}}{\frac{1}{2}-\frac{1}{5}}
Tā te mea he rite te tauraro o \frac{5}{20} me \frac{8}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{3}{20}}{\frac{1}{2}-\frac{1}{5}}
Tangohia te 8 i te 5, ka -3.
\frac{-\frac{3}{20}}{\frac{5}{10}-\frac{2}{10}}
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri \frac{1}{2} me \frac{1}{5} ki te hautau me te tautūnga 10.
\frac{-\frac{3}{20}}{\frac{5-2}{10}}
Tā te mea he rite te tauraro o \frac{5}{10} me \frac{2}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{3}{20}}{\frac{3}{10}}
Tangohia te 2 i te 5, ka 3.
-\frac{3}{20}\times \frac{10}{3}
Whakawehe -\frac{3}{20} ki te \frac{3}{10} mā te whakarea -\frac{3}{20} ki te tau huripoki o \frac{3}{10}.
\frac{-3\times 10}{20\times 3}
Me whakarea te -\frac{3}{20} ki te \frac{10}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-30}{60}
Mahia ngā whakarea i roto i te hautanga \frac{-3\times 10}{20\times 3}.
-\frac{1}{2}
Whakahekea te hautanga \frac{-30}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}