Aromātai
-\frac{2}{9}\approx -0.222222222
Tauwehe
-\frac{2}{9} = -0.2222222222222222
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{16}\left(-\frac{2}{3}\right)^{2}-\frac{-2\left(-3\right)^{2}-\left(-4^{2}\right)}{\left(-2\right)^{3}}
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\frac{1}{16}\times \frac{4}{9}-\frac{-2\left(-3\right)^{2}-\left(-4^{2}\right)}{\left(-2\right)^{3}}
Tātaihia te -\frac{2}{3} mā te pū o 2, kia riro ko \frac{4}{9}.
\frac{1\times 4}{16\times 9}-\frac{-2\left(-3\right)^{2}-\left(-4^{2}\right)}{\left(-2\right)^{3}}
Me whakarea te \frac{1}{16} ki te \frac{4}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{4}{144}-\frac{-2\left(-3\right)^{2}-\left(-4^{2}\right)}{\left(-2\right)^{3}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 4}{16\times 9}.
\frac{1}{36}-\frac{-2\left(-3\right)^{2}-\left(-4^{2}\right)}{\left(-2\right)^{3}}
Whakahekea te hautanga \frac{4}{144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{1}{36}-\frac{-2\times 9-\left(-4^{2}\right)}{\left(-2\right)^{3}}
Tātaihia te -3 mā te pū o 2, kia riro ko 9.
\frac{1}{36}-\frac{-18-\left(-4^{2}\right)}{\left(-2\right)^{3}}
Whakareatia te -2 ki te 9, ka -18.
\frac{1}{36}-\frac{-18-\left(-16\right)}{\left(-2\right)^{3}}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{1}{36}-\frac{-18+16}{\left(-2\right)^{3}}
Ko te tauaro o -16 ko 16.
\frac{1}{36}-\frac{-2}{\left(-2\right)^{3}}
Tāpirihia te -18 ki te 16, ka -2.
\frac{1}{36}-\frac{-2}{-8}
Tātaihia te -2 mā te pū o 3, kia riro ko -8.
\frac{1}{36}-\frac{1}{4}
Whakahekea te hautanga \frac{-2}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
\frac{1}{36}-\frac{9}{36}
Ko te maha noa iti rawa atu o 36 me 4 ko 36. Me tahuri \frac{1}{36} me \frac{1}{4} ki te hautau me te tautūnga 36.
\frac{1-9}{36}
Tā te mea he rite te tauraro o \frac{1}{36} me \frac{9}{36}, me tango rāua mā te tango i ō raua taurunga.
\frac{-8}{36}
Tangohia te 9 i te 1, ka -8.
-\frac{2}{9}
Whakahekea te hautanga \frac{-8}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}