Aromātai
\frac{397}{168}\approx 2.363095238
Tauwehe
\frac{397}{2 ^ {3} \cdot 3 \cdot 7} = 2\frac{61}{168} = 2.363095238095238
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{12}+\frac{8}{12}+\frac{7}{8}+\frac{4}{7}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri \frac{1}{4} me \frac{2}{3} ki te hautau me te tautūnga 12.
\frac{3+8}{12}+\frac{7}{8}+\frac{4}{7}
Tā te mea he rite te tauraro o \frac{3}{12} me \frac{8}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{12}+\frac{7}{8}+\frac{4}{7}
Tāpirihia te 3 ki te 8, ka 11.
\frac{22}{24}+\frac{21}{24}+\frac{4}{7}
Ko te maha noa iti rawa atu o 12 me 8 ko 24. Me tahuri \frac{11}{12} me \frac{7}{8} ki te hautau me te tautūnga 24.
\frac{22+21}{24}+\frac{4}{7}
Tā te mea he rite te tauraro o \frac{22}{24} me \frac{21}{24}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{43}{24}+\frac{4}{7}
Tāpirihia te 22 ki te 21, ka 43.
\frac{301}{168}+\frac{96}{168}
Ko te maha noa iti rawa atu o 24 me 7 ko 168. Me tahuri \frac{43}{24} me \frac{4}{7} ki te hautau me te tautūnga 168.
\frac{301+96}{168}
Tā te mea he rite te tauraro o \frac{301}{168} me \frac{96}{168}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{397}{168}
Tāpirihia te 301 ki te 96, ka 397.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}