Aromātai
\frac{\left(x-24\right)\left(x+12\right)}{12}
Whakaroha
\frac{x^{2}}{12}-x-24
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( \frac { 1 } { 3 } x - 8 ) ( \frac { 1 } { 4 } x + 3 )
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}x\times \frac{1}{4}x+\frac{1}{3}x\times 3-8\times \frac{1}{4}x-24
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \frac{1}{3}x-8 ki ia tau o \frac{1}{4}x+3.
\frac{1}{3}x^{2}\times \frac{1}{4}+\frac{1}{3}x\times 3-8\times \frac{1}{4}x-24
Whakareatia te x ki te x, ka x^{2}.
\frac{1\times 1}{3\times 4}x^{2}+\frac{1}{3}x\times 3-8\times \frac{1}{4}x-24
Me whakarea te \frac{1}{3} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{12}x^{2}+\frac{1}{3}x\times 3-8\times \frac{1}{4}x-24
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{3\times 4}.
\frac{1}{12}x^{2}+x-8\times \frac{1}{4}x-24
Me whakakore te 3 me te 3.
\frac{1}{12}x^{2}+x+\frac{-8}{4}x-24
Whakareatia te -8 ki te \frac{1}{4}, ka \frac{-8}{4}.
\frac{1}{12}x^{2}+x-2x-24
Whakawehea te -8 ki te 4, kia riro ko -2.
\frac{1}{12}x^{2}-x-24
Pahekotia te x me -2x, ka -x.
\frac{1}{3}x\times \frac{1}{4}x+\frac{1}{3}x\times 3-8\times \frac{1}{4}x-24
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \frac{1}{3}x-8 ki ia tau o \frac{1}{4}x+3.
\frac{1}{3}x^{2}\times \frac{1}{4}+\frac{1}{3}x\times 3-8\times \frac{1}{4}x-24
Whakareatia te x ki te x, ka x^{2}.
\frac{1\times 1}{3\times 4}x^{2}+\frac{1}{3}x\times 3-8\times \frac{1}{4}x-24
Me whakarea te \frac{1}{3} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{12}x^{2}+\frac{1}{3}x\times 3-8\times \frac{1}{4}x-24
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{3\times 4}.
\frac{1}{12}x^{2}+x-8\times \frac{1}{4}x-24
Me whakakore te 3 me te 3.
\frac{1}{12}x^{2}+x+\frac{-8}{4}x-24
Whakareatia te -8 ki te \frac{1}{4}, ka \frac{-8}{4}.
\frac{1}{12}x^{2}+x-2x-24
Whakawehea te -8 ki te 4, kia riro ko -2.
\frac{1}{12}x^{2}-x-24
Pahekotia te x me -2x, ka -x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}