Aromātai
-\frac{2}{3}\approx -0.666666667
Tauwehe
-\frac{2}{3} = -0.6666666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{4}{12}-\frac{1}{12}}{\frac{1}{8}-\frac{1}{2}}
Ko te maha noa iti rawa atu o 3 me 12 ko 12. Me tahuri \frac{1}{3} me \frac{1}{12} ki te hautau me te tautūnga 12.
\frac{\frac{4-1}{12}}{\frac{1}{8}-\frac{1}{2}}
Tā te mea he rite te tauraro o \frac{4}{12} me \frac{1}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3}{12}}{\frac{1}{8}-\frac{1}{2}}
Tangohia te 1 i te 4, ka 3.
\frac{\frac{1}{4}}{\frac{1}{8}-\frac{1}{2}}
Whakahekea te hautanga \frac{3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\frac{1}{4}}{\frac{1}{8}-\frac{4}{8}}
Ko te maha noa iti rawa atu o 8 me 2 ko 8. Me tahuri \frac{1}{8} me \frac{1}{2} ki te hautau me te tautūnga 8.
\frac{\frac{1}{4}}{\frac{1-4}{8}}
Tā te mea he rite te tauraro o \frac{1}{8} me \frac{4}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{4}}{-\frac{3}{8}}
Tangohia te 4 i te 1, ka -3.
\frac{1}{4}\left(-\frac{8}{3}\right)
Whakawehe \frac{1}{4} ki te -\frac{3}{8} mā te whakarea \frac{1}{4} ki te tau huripoki o -\frac{3}{8}.
\frac{1\left(-8\right)}{4\times 3}
Me whakarea te \frac{1}{4} ki te -\frac{8}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-8}{12}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-8\right)}{4\times 3}.
-\frac{2}{3}
Whakahekea te hautanga \frac{-8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}