Aromātai
\frac{\left(4-9x^{2}\right)^{2}}{1296}
Whakaroha
\frac{x^{4}}{16}-\frac{x^{2}}{18}+\frac{1}{81}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{2}{6}+\frac{3x}{6}\right)\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{1}{3} ki te \frac{2}{2}. Whakareatia \frac{x}{2} ki te \frac{3}{3}.
\frac{2+3x}{6}\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{3x}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2+3x}{6}\left(\frac{4}{36}-\frac{9x^{2}}{36}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9 me 4 ko 36. Whakareatia \frac{1}{9} ki te \frac{4}{4}. Whakareatia \frac{x^{2}}{4} ki te \frac{9}{9}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{1}{3}-\frac{x}{2}\right)
Tā te mea he rite te tauraro o \frac{4}{36} me \frac{9x^{2}}{36}, me tango rāua mā te tango i ō raua taurunga.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{2}{6}-\frac{3x}{6}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{1}{3} ki te \frac{2}{2}. Whakareatia \frac{x}{2} ki te \frac{3}{3}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\times \frac{2-3x}{6}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{3x}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36}\times \frac{2-3x}{6}
Me whakarea te \frac{2+3x}{6} ki te \frac{4-9x^{2}}{36} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{6\times 36\times 6}
Me whakarea te \frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36} ki te \frac{2-3x}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{216\times 6}
Whakareatia te 6 ki te 36, ka 216.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{1296}
Whakareatia te 216 ki te 6, ka 1296.
\frac{\left(8-18x^{2}+12x-27x^{3}\right)\left(2-3x\right)}{1296}
Whakamahia te āhuatanga tohatoha hei whakarea te 2+3x ki te 4-9x^{2}.
\frac{16-72x^{2}+81x^{4}}{1296}
Whakamahia te āhuatanga tuaritanga hei whakarea te 8-18x^{2}+12x-27x^{3} ki te 2-3x ka whakakotahi i ngā kupu rite.
\left(\frac{2}{6}+\frac{3x}{6}\right)\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{1}{3} ki te \frac{2}{2}. Whakareatia \frac{x}{2} ki te \frac{3}{3}.
\frac{2+3x}{6}\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{3x}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2+3x}{6}\left(\frac{4}{36}-\frac{9x^{2}}{36}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9 me 4 ko 36. Whakareatia \frac{1}{9} ki te \frac{4}{4}. Whakareatia \frac{x^{2}}{4} ki te \frac{9}{9}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{1}{3}-\frac{x}{2}\right)
Tā te mea he rite te tauraro o \frac{4}{36} me \frac{9x^{2}}{36}, me tango rāua mā te tango i ō raua taurunga.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{2}{6}-\frac{3x}{6}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{1}{3} ki te \frac{2}{2}. Whakareatia \frac{x}{2} ki te \frac{3}{3}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\times \frac{2-3x}{6}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{3x}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36}\times \frac{2-3x}{6}
Me whakarea te \frac{2+3x}{6} ki te \frac{4-9x^{2}}{36} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{6\times 36\times 6}
Me whakarea te \frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36} ki te \frac{2-3x}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{216\times 6}
Whakareatia te 6 ki te 36, ka 216.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{1296}
Whakareatia te 216 ki te 6, ka 1296.
\frac{\left(8-18x^{2}+12x-27x^{3}\right)\left(2-3x\right)}{1296}
Whakamahia te āhuatanga tohatoha hei whakarea te 2+3x ki te 4-9x^{2}.
\frac{16-72x^{2}+81x^{4}}{1296}
Whakamahia te āhuatanga tuaritanga hei whakarea te 8-18x^{2}+12x-27x^{3} ki te 2-3x ka whakakotahi i ngā kupu rite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}