Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(1-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2}-x ki te x.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(\frac{5}{5}-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{5-1}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{4}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Tangohia te 1 i te 5, ka 4.
\frac{1}{2}x-x^{2}=\frac{\frac{2\times 4}{7\times 5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Me whakarea te \frac{2}{7} ki te \frac{4}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 4}{7\times 5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5}{5}-\frac{3}{5}}{1+\frac{2}{5}}}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5-3}{5}}{1+\frac{2}{5}}}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{3}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{1+\frac{2}{5}}}
Tangohia te 3 i te 5, ka 2.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5}{5}+\frac{2}{5}}}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5+2}{5}}}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{2}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{7}{5}}}
Tāpirihia te 5 ki te 2, ka 7.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{5}\times \frac{5}{7}}
Whakawehe \frac{2}{5} ki te \frac{7}{5} mā te whakarea \frac{2}{5} ki te tau huripoki o \frac{7}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2\times 5}{5\times 7}}
Me whakarea te \frac{2}{5} ki te \frac{5}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{7}}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{1}{2}x-x^{2}=\frac{8}{35}\times \frac{7}{2}
Whakawehe \frac{8}{35} ki te \frac{2}{7} mā te whakarea \frac{8}{35} ki te tau huripoki o \frac{2}{7}.
\frac{1}{2}x-x^{2}=\frac{8\times 7}{35\times 2}
Me whakarea te \frac{8}{35} ki te \frac{7}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x-x^{2}=\frac{56}{70}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 7}{35\times 2}.
\frac{1}{2}x-x^{2}=\frac{4}{5}
Whakahekea te hautanga \frac{56}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
\frac{1}{2}x-x^{2}-\frac{4}{5}=0
Tangohia te \frac{4}{5} mai i ngā taha e rua.
-x^{2}+\frac{1}{2}x-\frac{4}{5}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, \frac{1}{2} mō b, me -\frac{4}{5} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-\frac{16}{5}}}{2\left(-1\right)}
Whakareatia 4 ki te -\frac{4}{5}.
x=\frac{-\frac{1}{2}±\sqrt{-\frac{59}{20}}}{2\left(-1\right)}
Tāpiri \frac{1}{4} ki te -\frac{16}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{2\left(-1\right)}
Tuhia te pūtakerua o te -\frac{59}{20}.
x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\frac{\sqrt{295}i}{10}-\frac{1}{2}}{-2}
Nā, me whakaoti te whārite x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2} ina he tāpiri te ±. Tāpiri -\frac{1}{2} ki te \frac{i\sqrt{295}}{10}.
x=-\frac{\sqrt{295}i}{20}+\frac{1}{4}
Whakawehe -\frac{1}{2}+\frac{i\sqrt{295}}{10} ki te -2.
x=\frac{-\frac{\sqrt{295}i}{10}-\frac{1}{2}}{-2}
Nā, me whakaoti te whārite x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2} ina he tango te ±. Tango \frac{i\sqrt{295}}{10} mai i -\frac{1}{2}.
x=\frac{\sqrt{295}i}{20}+\frac{1}{4}
Whakawehe -\frac{1}{2}-\frac{i\sqrt{295}}{10} ki te -2.
x=-\frac{\sqrt{295}i}{20}+\frac{1}{4} x=\frac{\sqrt{295}i}{20}+\frac{1}{4}
Kua oti te whārite te whakatau.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(1-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2}-x ki te x.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(\frac{5}{5}-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{5-1}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{4}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Tangohia te 1 i te 5, ka 4.
\frac{1}{2}x-x^{2}=\frac{\frac{2\times 4}{7\times 5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Me whakarea te \frac{2}{7} ki te \frac{4}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 4}{7\times 5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5}{5}-\frac{3}{5}}{1+\frac{2}{5}}}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5-3}{5}}{1+\frac{2}{5}}}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{3}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{1+\frac{2}{5}}}
Tangohia te 3 i te 5, ka 2.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5}{5}+\frac{2}{5}}}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5+2}{5}}}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{2}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{7}{5}}}
Tāpirihia te 5 ki te 2, ka 7.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{5}\times \frac{5}{7}}
Whakawehe \frac{2}{5} ki te \frac{7}{5} mā te whakarea \frac{2}{5} ki te tau huripoki o \frac{7}{5}.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2\times 5}{5\times 7}}
Me whakarea te \frac{2}{5} ki te \frac{5}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{7}}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{1}{2}x-x^{2}=\frac{8}{35}\times \frac{7}{2}
Whakawehe \frac{8}{35} ki te \frac{2}{7} mā te whakarea \frac{8}{35} ki te tau huripoki o \frac{2}{7}.
\frac{1}{2}x-x^{2}=\frac{8\times 7}{35\times 2}
Me whakarea te \frac{8}{35} ki te \frac{7}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x-x^{2}=\frac{56}{70}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 7}{35\times 2}.
\frac{1}{2}x-x^{2}=\frac{4}{5}
Whakahekea te hautanga \frac{56}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
-x^{2}+\frac{1}{2}x=\frac{4}{5}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+\frac{1}{2}x}{-1}=\frac{\frac{4}{5}}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{\frac{1}{2}}{-1}x=\frac{\frac{4}{5}}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-\frac{1}{2}x=\frac{\frac{4}{5}}{-1}
Whakawehe \frac{1}{2} ki te -1.
x^{2}-\frac{1}{2}x=-\frac{4}{5}
Whakawehe \frac{4}{5} ki te -1.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{4}{5}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{4}{5}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{59}{80}
Tāpiri -\frac{4}{5} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=-\frac{59}{80}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{59}{80}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{\sqrt{295}i}{20} x-\frac{1}{4}=-\frac{\sqrt{295}i}{20}
Whakarūnātia.
x=\frac{\sqrt{295}i}{20}+\frac{1}{4} x=-\frac{\sqrt{295}i}{20}+\frac{1}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.