Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{4}-x+x^{2}+3x=\frac{1}{4}+x\left(x+2\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{1}{2}-x\right)^{2}.
\frac{1}{4}+2x+x^{2}=\frac{1}{4}+x\left(x+2\right)
Pahekotia te -x me 3x, ka 2x.
\frac{1}{4}+2x+x^{2}=\frac{1}{4}+x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+2.
\frac{1}{4}+2x+x^{2}-\frac{1}{4}=x^{2}+2x
Tangohia te \frac{1}{4} mai i ngā taha e rua.
2x+x^{2}=x^{2}+2x
Tangohia te \frac{1}{4} i te \frac{1}{4}, ka 0.
2x+x^{2}-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
2x=2x
Pahekotia te x^{2} me -x^{2}, ka 0.
2x-2x=0
Tangohia te 2x mai i ngā taha e rua.
0=0
Pahekotia te 2x me -2x, ka 0.
\text{true}
Whakatauritea te 0 me te 0.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
\frac{1}{4}-x+x^{2}+3x=\frac{1}{4}+x\left(x+2\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{1}{2}-x\right)^{2}.
\frac{1}{4}+2x+x^{2}=\frac{1}{4}+x\left(x+2\right)
Pahekotia te -x me 3x, ka 2x.
\frac{1}{4}+2x+x^{2}=\frac{1}{4}+x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+2.
\frac{1}{4}+2x+x^{2}-\frac{1}{4}=x^{2}+2x
Tangohia te \frac{1}{4} mai i ngā taha e rua.
2x+x^{2}=x^{2}+2x
Tangohia te \frac{1}{4} i te \frac{1}{4}, ka 0.
2x+x^{2}-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
2x=2x
Pahekotia te x^{2} me -x^{2}, ka 0.
2x-2x=0
Tangohia te 2x mai i ngā taha e rua.
0=0
Pahekotia te 2x me -2x, ka 0.
\text{true}
Whakatauritea te 0 me te 0.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.