Whakaoti mō x (complex solution)
x\in \mathrm{C}
Whakaoti mō x
x\in \mathrm{R}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}-x+x^{2}+3x=\frac{1}{4}+x\left(x+2\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{1}{2}-x\right)^{2}.
\frac{1}{4}+2x+x^{2}=\frac{1}{4}+x\left(x+2\right)
Pahekotia te -x me 3x, ka 2x.
\frac{1}{4}+2x+x^{2}=\frac{1}{4}+x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+2.
\frac{1}{4}+2x+x^{2}-\frac{1}{4}=x^{2}+2x
Tangohia te \frac{1}{4} mai i ngā taha e rua.
2x+x^{2}=x^{2}+2x
Tangohia te \frac{1}{4} i te \frac{1}{4}, ka 0.
2x+x^{2}-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
2x=2x
Pahekotia te x^{2} me -x^{2}, ka 0.
2x-2x=0
Tangohia te 2x mai i ngā taha e rua.
0=0
Pahekotia te 2x me -2x, ka 0.
\text{true}
Whakatauritea te 0 me te 0.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
\frac{1}{4}-x+x^{2}+3x=\frac{1}{4}+x\left(x+2\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{1}{2}-x\right)^{2}.
\frac{1}{4}+2x+x^{2}=\frac{1}{4}+x\left(x+2\right)
Pahekotia te -x me 3x, ka 2x.
\frac{1}{4}+2x+x^{2}=\frac{1}{4}+x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+2.
\frac{1}{4}+2x+x^{2}-\frac{1}{4}=x^{2}+2x
Tangohia te \frac{1}{4} mai i ngā taha e rua.
2x+x^{2}=x^{2}+2x
Tangohia te \frac{1}{4} i te \frac{1}{4}, ka 0.
2x+x^{2}-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
2x=2x
Pahekotia te x^{2} me -x^{2}, ka 0.
2x-2x=0
Tangohia te 2x mai i ngā taha e rua.
0=0
Pahekotia te 2x me -2x, ka 0.
\text{true}
Whakatauritea te 0 me te 0.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}