Whakaoti mō x
x=\frac{5}{18}\approx 0.277777778
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}-x=\frac{7}{2}x\times \frac{2}{7}\left(1-\frac{1}{5}\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\frac{1}{2}-x=x\left(1-\frac{1}{5}\right)
Me whakakore atu te \frac{7}{2} me tōna tau utu \frac{2}{7}.
\frac{1}{2}-x=x\left(\frac{5}{5}-\frac{1}{5}\right)
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{1}{2}-x=x\times \frac{5-1}{5}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}-x=x\times \frac{4}{5}
Tangohia te 1 i te 5, ka 4.
\frac{1}{2}-x-x\times \frac{4}{5}=0
Tangohia te x\times \frac{4}{5} mai i ngā taha e rua.
\frac{1}{2}-\frac{9}{5}x=0
Pahekotia te -x me -x\times \frac{4}{5}, ka -\frac{9}{5}x.
-\frac{9}{5}x=-\frac{1}{2}
Tangohia te \frac{1}{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{1}{2}\left(-\frac{5}{9}\right)
Me whakarea ngā taha e rua ki te -\frac{5}{9}, te tau utu o -\frac{9}{5}.
x=\frac{-\left(-5\right)}{2\times 9}
Me whakarea te -\frac{1}{2} ki te -\frac{5}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{5}{18}
Mahia ngā whakarea i roto i te hautanga \frac{-\left(-5\right)}{2\times 9}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}