Aromātai
3-5a
Whakaroha
3-5a
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}-a+a^{2}-3\left(a-\frac{1}{2}\right)\left(a+\frac{1}{2}\right)+2\left(a-1\right)^{2}
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(\frac{1}{2}-a\right)^{2}.
\frac{1}{4}-a+a^{2}-3\left(a-\frac{1}{2}\right)\left(a+\frac{1}{2}\right)+2\left(a^{2}-2a+1\right)
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-1\right)^{2}.
\frac{1}{4}-a+a^{2}-3\left(a-\frac{1}{2}\right)\left(a+\frac{1}{2}\right)+2a^{2}-4a+2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a^{2}-2a+1.
\frac{1}{4}-a+a^{2}+\left(-3a+\frac{3}{2}\right)\left(a+\frac{1}{2}\right)+2a^{2}-4a+2
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te a-\frac{1}{2}.
\frac{1}{4}-a+a^{2}-3a^{2}+\frac{3}{4}+2a^{2}-4a+2
Whakamahia te āhuatanga tuaritanga hei whakarea te -3a+\frac{3}{2} ki te a+\frac{1}{2} ka whakakotahi i ngā kupu rite.
\frac{1}{4}-a-2a^{2}+\frac{3}{4}+2a^{2}-4a+2
Pahekotia te a^{2} me -3a^{2}, ka -2a^{2}.
1-a-2a^{2}+2a^{2}-4a+2
Tāpirihia te \frac{1}{4} ki te \frac{3}{4}, ka 1.
1-a-4a+2
Pahekotia te -2a^{2} me 2a^{2}, ka 0.
1-5a+2
Pahekotia te -a me -4a, ka -5a.
3-5a
Tāpirihia te 1 ki te 2, ka 3.
\frac{1}{4}-a+a^{2}-3\left(a-\frac{1}{2}\right)\left(a+\frac{1}{2}\right)+2\left(a-1\right)^{2}
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(\frac{1}{2}-a\right)^{2}.
\frac{1}{4}-a+a^{2}-3\left(a-\frac{1}{2}\right)\left(a+\frac{1}{2}\right)+2\left(a^{2}-2a+1\right)
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-1\right)^{2}.
\frac{1}{4}-a+a^{2}-3\left(a-\frac{1}{2}\right)\left(a+\frac{1}{2}\right)+2a^{2}-4a+2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a^{2}-2a+1.
\frac{1}{4}-a+a^{2}+\left(-3a+\frac{3}{2}\right)\left(a+\frac{1}{2}\right)+2a^{2}-4a+2
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te a-\frac{1}{2}.
\frac{1}{4}-a+a^{2}-3a^{2}+\frac{3}{4}+2a^{2}-4a+2
Whakamahia te āhuatanga tuaritanga hei whakarea te -3a+\frac{3}{2} ki te a+\frac{1}{2} ka whakakotahi i ngā kupu rite.
\frac{1}{4}-a-2a^{2}+\frac{3}{4}+2a^{2}-4a+2
Pahekotia te a^{2} me -3a^{2}, ka -2a^{2}.
1-a-2a^{2}+2a^{2}-4a+2
Tāpirihia te \frac{1}{4} ki te \frac{3}{4}, ka 1.
1-a-4a+2
Pahekotia te -2a^{2} me 2a^{2}, ka 0.
1-5a+2
Pahekotia te -a me -4a, ka -5a.
3-5a
Tāpirihia te 1 ki te 2, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}