Aromātai
-\frac{4}{3}\approx -1.333333333
Tauwehe
-\frac{4}{3} = -1\frac{1}{3} = -1.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2}{4}-\frac{3}{4}-\frac{1}{12}}{\left(-\frac{1}{2}\right)^{2}}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{1}{2} me \frac{3}{4} ki te hautau me te tautūnga 4.
\frac{\frac{2-3}{4}-\frac{1}{12}}{\left(-\frac{1}{2}\right)^{2}}
Tā te mea he rite te tauraro o \frac{2}{4} me \frac{3}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{1}{4}-\frac{1}{12}}{\left(-\frac{1}{2}\right)^{2}}
Tangohia te 3 i te 2, ka -1.
\frac{-\frac{3}{12}-\frac{1}{12}}{\left(-\frac{1}{2}\right)^{2}}
Ko te maha noa iti rawa atu o 4 me 12 ko 12. Me tahuri -\frac{1}{4} me \frac{1}{12} ki te hautau me te tautūnga 12.
\frac{\frac{-3-1}{12}}{\left(-\frac{1}{2}\right)^{2}}
Tā te mea he rite te tauraro o -\frac{3}{12} me \frac{1}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{-4}{12}}{\left(-\frac{1}{2}\right)^{2}}
Tangohia te 1 i te -3, ka -4.
\frac{-\frac{1}{3}}{\left(-\frac{1}{2}\right)^{2}}
Whakahekea te hautanga \frac{-4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{-\frac{1}{3}}{\frac{1}{4}}
Tātaihia te -\frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
-\frac{1}{3}\times 4
Whakawehe -\frac{1}{3} ki te \frac{1}{4} mā te whakarea -\frac{1}{3} ki te tau huripoki o \frac{1}{4}.
\frac{-4}{3}
Tuhia te -\frac{1}{3}\times 4 hei hautanga kotahi.
-\frac{4}{3}
Ka taea te hautanga \frac{-4}{3} te tuhi anō ko -\frac{4}{3} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}