Aromātai
\frac{11}{10}=1.1
Tauwehe
\frac{11}{2 \cdot 5} = 1\frac{1}{10} = 1.1
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3}{6}-\frac{2}{6}}{\frac{5}{18}}+\frac{1}{3}+\frac{1}{6}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{\frac{3-2}{6}}{\frac{5}{18}}+\frac{1}{3}+\frac{1}{6}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{6}}{\frac{5}{18}}+\frac{1}{3}+\frac{1}{6}
Tangohia te 2 i te 3, ka 1.
\frac{1}{6}\times \frac{18}{5}+\frac{1}{3}+\frac{1}{6}
Whakawehe \frac{1}{6} ki te \frac{5}{18} mā te whakarea \frac{1}{6} ki te tau huripoki o \frac{5}{18}.
\frac{1\times 18}{6\times 5}+\frac{1}{3}+\frac{1}{6}
Me whakarea te \frac{1}{6} ki te \frac{18}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{18}{30}+\frac{1}{3}+\frac{1}{6}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 18}{6\times 5}.
\frac{3}{5}+\frac{1}{3}+\frac{1}{6}
Whakahekea te hautanga \frac{18}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{9}{15}+\frac{5}{15}+\frac{1}{6}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{3}{5} me \frac{1}{3} ki te hautau me te tautūnga 15.
\frac{9+5}{15}+\frac{1}{6}
Tā te mea he rite te tauraro o \frac{9}{15} me \frac{5}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{14}{15}+\frac{1}{6}
Tāpirihia te 9 ki te 5, ka 14.
\frac{28}{30}+\frac{5}{30}
Ko te maha noa iti rawa atu o 15 me 6 ko 30. Me tahuri \frac{14}{15} me \frac{1}{6} ki te hautau me te tautūnga 30.
\frac{28+5}{30}
Tā te mea he rite te tauraro o \frac{28}{30} me \frac{5}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{33}{30}
Tāpirihia te 28 ki te 5, ka 33.
\frac{11}{10}
Whakahekea te hautanga \frac{33}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}